論文の概要: RASA: Efficient Register-Aware Systolic Array Matrix Engine for CPU
- arxiv url: http://arxiv.org/abs/2110.01752v1
- Date: Tue, 5 Oct 2021 00:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 14:19:45.438737
- Title: RASA: Efficient Register-Aware Systolic Array Matrix Engine for CPU
- Title(参考訳): RASA: CPU用の効率的なレジスタ対応シストリックアレイ行列エンジン
- Authors: Geonhwa Jeong, Eric Qin, Ananda Samajdar, Christopher J. Hughes,
Sreenivas Subramoney, Hyesoon Kim, Tushar Krishna
- Abstract要約: RASA, Register-Aware Systolic Arrayを提案する。
我々は,実行段階を複数のサブステージに分割し,命令を重複させてオーバーヘッドを隠蔽し,同時に実行する手法を開発した。
RASAをベースとした設計では、無視できる面積と電力オーバーヘッドで性能が大幅に向上した。
- 参考スコア(独自算出の注目度): 6.436294460697506
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As AI-based applications become pervasive, CPU vendors are starting to
incorporate matrix engines within the datapath to boost efficiency. Systolic
arrays have been the premier architectural choice as matrix engines in offload
accelerators. However, we demonstrate that incorporating them inside CPUs can
introduce under-utilization and stalls due to limited register storage to
amortize the fill and drain times of the array. To address this, we propose
RASA, Register-Aware Systolic Array. We develop techniques to divide an
execution stage into several sub-stages and overlap instructions to hide
overheads and run them concurrently. RASA-based designs improve performance
significantly with negligible area and power overhead.
- Abstract(参考訳): AIベースのアプリケーションが普及するにつれて、CPUベンダはデータパスにマトリックスエンジンを組み込んで効率を向上し始めている。
シストリックアレイは、オフロード加速器のマトリックスエンジンとして重要なアーキテクチャ選択である。
しかし,これらをcpu内に組み込むことで,レジスタストレージが制限され,メモリ不足やストールが発生し,配列の充填時間やドレイン時間が短縮されることを実証する。
そこで我々はRASA, Register-Aware Systolic Arrayを提案する。
我々は,実行段階を複数のサブステージに分割し,命令を重複させてオーバーヘッドを隠蔽し,同時に実行する手法を開発した。
RASAベースの設計は、無視できる面積と電力オーバーヘッドで性能を大幅に改善した。
関連論文リスト
- Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - TrIM: Triangular Input Movement Systolic Array for Convolutional Neural Networks -- Part II: Architecture and Hardware Implementation [0.0]
TrIMは、入力の三角移動に基づく革新的なデータフローである。
TrIMは、最先端のシストリックアレイと比較して1桁のメモリアクセス数を削減できる。
アーキテクチャは、毎秒453.6ギガオペレーションのピークスループットを達成する。
論文 参考訳(メタデータ) (2024-08-05T10:18:00Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - PopSparse: Accelerated block sparse matrix multiplication on IPU [0.5661403709207713]
本稿では,Graphcore IPU上での高速スパース操作を実現するライブラリであるPopSparseを紹介する。
静的、コンパイル時にスパーシティパターンが固定される、動的、モデルの実行毎に変更される、という2つの異なるタイプのスパーシリティをターゲットにしています。
その結果,PopSparse の実装は IPU 上での高密度行列乗算よりも幅広い範囲で高速であることが示唆された。
論文 参考訳(メタデータ) (2023-03-29T20:00:19Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
パフォーマンス埋め込みは、アプリケーション間でパフォーマンスチューニングの知識伝達を可能にする。
本研究では, 深層ニューラルネットワーク, 密度およびスパース線形代数合成, および数値風速予測ステンシルのケーススタディにおいて, この伝達チューニング手法を実証する。
論文 参考訳(メタデータ) (2023-03-14T15:51:35Z) - VEGETA: Vertically-Integrated Extensions for Sparse/Dense GEMM Tile
Acceleration on CPUs [7.807134159136234]
この研究は、高密度マトリックスエンジン上でのISAおよびマイクロアーキテクチャ拡張の集合であるVEGETAを示し、CPUの柔軟な構造的空間性をサポートする。
VEGETAエンジンは、4:4 (dense), 2:4, 1:4, and unstructured sparse Layerを実行するときに1.09x, 2.20x, 3.74x, 3.28xのスピードアップを提供する。
論文 参考訳(メタデータ) (2023-02-17T04:35:58Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
我々は、フィールドプログラマブルゲートアレイ(FPGA)を用いた分散AI訓練システムのための新しいスマートネットワークインタフェースカード(NIC)を提案する。
提案するFPGAベースのAIスマートNICは,従来のNICを用いたベースラインシステムと比較して,6ノードで1.6倍,32ノードで2.5倍の性能向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T21:57:00Z) - A Deep Learning Inference Scheme Based on Pipelined Matrix
Multiplication Acceleration Design and Non-uniform Quantization [9.454905560571085]
本稿では,パイプライン行列乗算法と非一様量子化法に基づく低消費電力多層パーセプトロン(MLP)加速器を提案する。
その結果,本手法は少ない消費電力で優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2021-10-10T17:31:27Z) - Direct Spatial Implementation of Sparse Matrix Multipliers for Reservoir
Computing [0.0]
貯水池の計算システムは、非常に大きくてスパースな固定行列の繰り返し乗算に依存している。
これらの固定行列の直接実装は、計算で実行される作業を最小化する。
ビットシリアル行列乗算器の構造を提示し、正則符号付き桁表現を用いて論理利用をさらに削減する。
論文 参考訳(メタデータ) (2021-01-21T23:16:22Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
本稿では,Deep Learningプリミティブの高性能実装を自動的に生成するコンパイラアルゴリズムを提案する。
我々は多面体モデルを用いた新しいデータ再利用分析アルゴリズムを開発した。
また、このようなハイブリッドコンパイラとライブラリ使用の最小限のアプローチが、最先端のパフォーマンスをもたらすことを示す。
論文 参考訳(メタデータ) (2020-06-02T06:44:09Z) - On Coresets for Support Vector Machines [61.928187390362176]
coresetは、元のデータポイントの小さな、代表的なサブセットである。
我々は,本アルゴリズムを用いて,既製のSVMソルバをストリーミング,分散,動的データ設定に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-02-15T23:25:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。