論文の概要: Neural Network Adversarial Attack Method Based on Improved Genetic
Algorithm
- arxiv url: http://arxiv.org/abs/2110.01818v1
- Date: Tue, 5 Oct 2021 04:46:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 23:34:27.876889
- Title: Neural Network Adversarial Attack Method Based on Improved Genetic
Algorithm
- Title(参考訳): 改良された遺伝的アルゴリズムに基づくニューラルネットワーク逆攻撃法
- Authors: Dingming Yang, Yanrong Cui, Hongqiang Yuan
- Abstract要約: 改良された遺伝的アルゴリズムに基づくニューラルネットワーク逆攻撃法を提案する。
この方法は、ニューラルネットワークモデルの内部構造やパラメータ情報を必要としない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning algorithms are widely used in fields such as computer vision
and natural language processing, but they are vulnerable to security threats
from adversarial attacks because of their internal presence of a large number
of nonlinear functions and parameters leading to their uninterpretability. In
this paper, we propose a neural network adversarial attack method based on an
improved genetic algorithm. The improved genetic algorithm improves the
variation and crossover links based on the original genetic optimization
algorithm, which greatly improves the iteration efficiency and shortens the
running time. The method does not need the internal structure and parameter
information of the neural network model, and it can obtain the adversarial
samples with high confidence in a short time by the classification and
confidence information of the neural network. The experimental results show
that the method in this paper has a wide range of applicability and high
efficiency for the model, and provides a new idea for the adversarial attack.
- Abstract(参考訳): ディープラーニングアルゴリズムはコンピュータビジョンや自然言語処理といった分野で広く使われているが、多くの非線形関数やパラメータが内部に存在するため、敵の攻撃によるセキュリティの脅威に弱い。
本稿では,改良された遺伝的アルゴリズムに基づくニューラルネットワークの逆攻撃手法を提案する。
改良された遺伝的アルゴリズムは、元の遺伝的最適化アルゴリズムに基づくばらつきとクロスオーバーリンクを改善し、反復効率を大幅に改善し、実行時間を短縮する。
本手法では,ニューラルネットワークモデルの内部構造やパラメータ情報を必要とせず,ニューラルネットワークの分類と信頼性情報により,短時間で高い信頼性の対向サンプルを得ることができる。
実験結果から,本手法はモデルに対して幅広い適用性と高い効率性を示し,敵攻撃に対する新たな考え方を提供する。
関連論文リスト
- Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Benchmarking the Accuracy and Robustness of Feedback Alignment
Algorithms [1.2183405753834562]
バックプロパゲーションは、その単純さ、効率性、高収束率のために、ディープニューラルネットワークをトレーニングするためのデフォルトのアルゴリズムである。
近年,より生物学的に妥当な学習法が提案されている。
BioTorchは、生物学的に動機付けられたニューラルネットワークを作成し、トレーニングし、ベンチマークするソフトウェアフレームワークである。
論文 参考訳(メタデータ) (2021-08-30T18:02:55Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
畳み込みニューラルネットワークの欠点は、敵の攻撃に弱いことである。
本稿では, 良好な精度を有する背骨CNNの対角的堅牢性を向上させることを目的とする。
最小限の計算オーバーヘッドの下では、拡張アーキテクチャはバックボーンCNNの標準的な性能と親和性が期待できる。
論文 参考訳(メタデータ) (2021-08-16T03:58:00Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
汎用ニューラルネットワークは悪質なエージェントの検出とローカライズに特に適していることを示す。
本稿では,連合学習における最先端のアプローチ,すなわち協調型ピアツーピア機械学習プロトコルを採用することを提案する。
シミュレーションでは,AIに基づく手法の有効性と有効性を検証するために,最小二乗問題を考える。
論文 参考訳(メタデータ) (2021-01-18T08:01:06Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Semi-Implicit Back Propagation [1.5533842336139065]
ニューラルネットワークトレーニングのための半単純バック伝搬法を提案する。
ニューロンの差は後方方向に伝播し、パラメータは近位写像で更新される。
MNISTとCIFAR-10の両方の実験により、提案アルゴリズムは損失減少とトレーニング/検証の精度の両方において、より良い性能をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-10T03:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。