Automated Design of Linear Bounding Functions for Sigmoidal Nonlinearities in Neural Networks
- URL: http://arxiv.org/abs/2406.10154v1
- Date: Fri, 14 Jun 2024 16:16:26 GMT
- Title: Automated Design of Linear Bounding Functions for Sigmoidal Nonlinearities in Neural Networks
- Authors: Matthias König, Xiyue Zhang, Holger H. Hoos, Marta Kwiatkowska, Jan N. van Rijn,
- Abstract summary: Existing complete verification techniques offer provable guarantees for all robustness queries but struggle to scale beyond small neural networks.
We propose a novel parameter search method to improve the quality of these linear approximations.
Specifically, we show that using a simple search method, carefully adapted to the given verification problem through state-of-the-art algorithm configuration techniques, improves the average global lower bound by 25% on average over the current state of the art.
- Score: 23.01933325606068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ubiquity of deep learning algorithms in various applications has amplified the need for assuring their robustness against small input perturbations such as those occurring in adversarial attacks. Existing complete verification techniques offer provable guarantees for all robustness queries but struggle to scale beyond small neural networks. To overcome this computational intractability, incomplete verification methods often rely on convex relaxation to over-approximate the nonlinearities in neural networks. Progress in tighter approximations has been achieved for piecewise linear functions. However, robustness verification of neural networks for general activation functions (e.g., Sigmoid, Tanh) remains under-explored and poses new challenges. Typically, these networks are verified using convex relaxation techniques, which involve computing linear upper and lower bounds of the nonlinear activation functions. In this work, we propose a novel parameter search method to improve the quality of these linear approximations. Specifically, we show that using a simple search method, carefully adapted to the given verification problem through state-of-the-art algorithm configuration techniques, improves the average global lower bound by 25% on average over the current state of the art on several commonly used local robustness verification benchmarks.
Related papers
- A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
We introduce a new approach to the estimation of the (generalisation) error and to convergence.
Our results include estimates of the error without any structural assumption on the neural networks.
arXiv Detail & Related papers (2023-06-23T20:57:31Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Zonotope Domains for Lagrangian Neural Network Verification [102.13346781220383]
We decompose the problem of verifying a deep neural network into the verification of many 2-layer neural networks.
Our technique yields bounds that improve upon both linear programming and Lagrangian-based verification techniques.
arXiv Detail & Related papers (2022-10-14T19:31:39Z) - On the Robustness and Anomaly Detection of Sparse Neural Networks [28.832060124537843]
We show that sparsity can make networks more robust and better anomaly detectors.
We also show that structured sparsity greatly helps in reducing the complexity of expensive robustness and detection methods.
We introduce a new method, SensNorm, which uses the sensitivity of weights derived from an appropriate pruning method to detect anomalous samples.
arXiv Detail & Related papers (2022-07-09T09:03:52Z) - Gradient Descent on Infinitely Wide Neural Networks: Global Convergence
and Generalization [0.0]
Many supervised machine learning methods are cast as optimization problems.
For prediction models which are linear in their parameters, this often leads to problems for prediction guarantees.
In this paper, we consider two-layer neural networks with homogeneous activation functions.
arXiv Detail & Related papers (2021-10-15T13:25:32Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
In recent years, artificial neural networks have developed into a powerful tool for dealing with a multitude of problems for which classical solution approaches.
It is still unclear why randomly gradient descent algorithms reach their limits.
arXiv Detail & Related papers (2021-02-23T18:17:47Z) - Reduced-Order Neural Network Synthesis with Robustness Guarantees [0.0]
Machine learning algorithms are being adapted to run locally on board, potentially hardware limited, devices to improve user privacy, reduce latency and be more energy efficient.
To address this issue, a method to automatically synthesize reduced-order neural networks (having fewer neurons) approxing the input/output mapping of a larger one is introduced.
Worst-case bounds for this approximation error are obtained and the approach can be applied to a wide variety of neural networks architectures.
arXiv Detail & Related papers (2021-02-18T12:03:57Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.