論文の概要: AraCOVID19-SSD: Arabic COVID-19 Sentiment and Sarcasm Detection Dataset
- arxiv url: http://arxiv.org/abs/2110.01948v1
- Date: Tue, 5 Oct 2021 11:24:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 14:26:02.937203
- Title: AraCOVID19-SSD: Arabic COVID-19 Sentiment and Sarcasm Detection Dataset
- Title(参考訳): aracovid19-ssd:アラビア語の感情と皮肉の検出データセット
- Authors: Mohamed Seghir Hadj Ameur, Hassina Aliane
- Abstract要約: 本稿は、AraCOVID19-SSDに5,162ツイートを含む、手動でアノテートされたアラビア語 COVID-19 sarcasm と感情検出データセットを構築し、リリースする。
これらのユーザの多くは、自分の意図した意味をユーモラスで面白い間接的な方法で伝達するために、サルカズム(sarcasm)を使っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Coronavirus disease (COVID-19) is an infectious respiratory disease that was
first discovered in late December 2019, in Wuhan, China, and then spread
worldwide causing a lot of panic and death. Users of social networking sites
such as Facebook and Twitter have been focused on reading, publishing, and
sharing novelties, tweets, and articles regarding the newly emerging pandemic.
A lot of these users often employ sarcasm to convey their intended meaning in a
humorous, funny, and indirect way making it hard for computer-based
applications to automatically understand and identify their goal and the harm
level that they can inflect. Motivated by the emerging need for annotated
datasets that tackle these kinds of problems in the context of COVID-19, this
paper builds and releases AraCOVID19-SSD a manually annotated Arabic COVID-19
sarcasm and sentiment detection dataset containing 5,162 tweets. To confirm the
practical utility of the built dataset, it has been carefully analyzed and
tested using several classification models.
- Abstract(参考訳): コロナウイルス(Coronavirus disease, COVID-19)は、2019年12月下旬に中国武漢で初めて発見された感染症で、その後世界中に広がった。
facebookやtwitterなどのソーシャルネットワークサイトのユーザーは、新たに出現するパンデミックに関するノベル、ツイート、記事の読み書き、公開、共有に力を入れている。
これらのユーザの多くは、自分の意図した意味をユーモラスで面白い間接的な方法で伝達するために、サルカズム(sarcasm)を使っている。
この論文は、新型コロナウイルス(COVID-19)の文脈でこのような問題に対処する注釈付きデータセットの必要性が高まっている中で、AraCOVID19-SSDを手動で注釈付けしたアラビアのCOVID-19サルカズムと5,162のツイートを含む感情検出データセットを構築しリリースする。
構築されたデータセットの実用性を確認するため、いくつかの分類モデルを用いて慎重に分析および試験を行った。
関連論文リスト
- Sarcasm Detection in a Disaster Context [103.93691731605163]
HurricaneSARCは,意図した皮肉に注釈を付けた15,000ツイートのデータセットである。
私たちの最高のモデルは、データセットで最大0.70F1を得ることができます。
論文 参考訳(メタデータ) (2023-08-16T05:58:12Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech
Detection Dataset [0.0]
「AraCOVID19-MFH」は、アラビア・COVID-19の偽ニュースとヘイトスピーチ検出データセットを手動で注釈付けしたものである。
当社のデータセットには、10の異なるラベルで注釈付けされた10,828のアラビア語ツイートが含まれています。
ヘイトスピーチの検出、意見/ニュースの分類、方言の識別、その他多くのタスクにも使用できる。
論文 参考訳(メタデータ) (2021-05-07T09:52:44Z) - ArCorona: Analyzing Arabic Tweets in the Early Days of Coronavirus
(COVID-19) Pandemic [3.057212947792573]
我々は、新型コロナウイルスに関連するアラビア語のツイートを手動で注釈付けした最大のデータセットを提示する。
アノテーションガイドラインを記述し、データセットを分析し、効果的な機械学習とトランスフォーマーに基づく分類モデルを構築する。
論文 参考訳(メタデータ) (2020-12-02T19:05:25Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - On Analyzing Antisocial Behaviors Amid COVID-19 Pandemic [5.900114841365645]
新型コロナウイルスのパンデミックでオンラインの反社会的行動を研究する研究はほとんどない。
本稿では、4000万以上の新型コロナウイルス関連ツイートの大規模なデータセットを収集し、注釈を付けることで、研究ギャップを埋める。
また、アノテーション付きデータセットの実証分析を行い、新型コロナウイルスのパンデミックの中で、新しい虐待的レキシコンが導入されたことを発見した。
論文 参考訳(メタデータ) (2020-07-21T11:11:35Z) - TICO-19: the Translation Initiative for Covid-19 [112.5601530395345]
COvid-19の翻訳イニシアチブ(TICO-19)は、テストおよび開発データを、35の異なる言語でAIおよびMT研究者に提供した。
同じデータが表現されているすべての言語に変換されるため、テストや開発は、セット内の任意の言語のペアリングに対して行うことができる。
論文 参考訳(メタデータ) (2020-07-03T16:26:17Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z) - Large Arabic Twitter Dataset on COVID-19 [0.7734726150561088]
2019年12月下旬に中国で発生した新型コロナウイルス(COVID-19)は、今や世界中で急速に普及している。
全世界で確認された感染者は200万人を超え、死者は180,000人を超えている。
この研究は、2020年1月1日以来、私たちが収集してきた新型コロナウイルスに関する最初のアラビア語のつぶやきデータセットについて述べています。
論文 参考訳(メタデータ) (2020-04-09T01:07:12Z) - Mining Coronavirus (COVID-19) Posts in Social Media [3.04585143845864]
世界保健機関(WHO)は2020年3月11日、新型コロナウイルス(COVID-19)を世界的なパンデミックと位置づけた。
本稿では,最先端機械学習モデルを用いたソーシャルメディア利用者投稿から,新型コロナウイルスの陽性報告を自動的に検出する研究の予備的結果を報告する。
論文 参考訳(メタデータ) (2020-03-28T23:38:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。