論文の概要: Large Arabic Twitter Dataset on COVID-19
- arxiv url: http://arxiv.org/abs/2004.04315v2
- Date: Wed, 22 Apr 2020 22:38:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 03:12:17.891025
- Title: Large Arabic Twitter Dataset on COVID-19
- Title(参考訳): 大型のアラビアツイッター、新型コロナで
- Authors: Sarah Alqurashi, Ahmad Alhindi, Eisa Alanazi
- Abstract要約: 2019年12月下旬に中国で発生した新型コロナウイルス(COVID-19)は、今や世界中で急速に普及している。
全世界で確認された感染者は200万人を超え、死者は180,000人を超えている。
この研究は、2020年1月1日以来、私たちが収集してきた新型コロナウイルスに関する最初のアラビア語のつぶやきデータセットについて述べています。
- 参考スコア(独自算出の注目度): 0.7734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 2019 coronavirus disease (COVID-19), emerged late December 2019 in China,
is now rapidly spreading across the globe. At the time of writing this paper,
the number of global confirmed cases has passed two millions and half with over
180,000 fatalities. Many countries have enforced strict social distancing
policies to contain the spread of the virus. This have changed the daily life
of tens of millions of people, and urged people to turn their discussions
online, e.g., via online social media sites like Twitter. In this work, we
describe the first Arabic tweets dataset on COVID-19 that we have been
collecting since January 1st, 2020. The dataset would help researchers and
policy makers in studying different societal issues related to the pandemic.
Many other tasks related to behavioral change, information sharing,
misinformation and rumors spreading can also be analyzed.
- Abstract(参考訳): 2019年12月下旬に中国で発生した新型コロナウイルス(COVID-19)は、世界中で急速に拡大している。
本稿執筆時点で、全世界で確認された症例数は200万件を超え、死者は180,000人を超えている。
多くの国は、ウイルスの拡散を防ぐために厳格な社会的距離調整政策を施行している。
これにより、何千万という人々の日常生活が変わり、twitterのようなオンラインソーシャルメディアサイトを通じて、議論をオンラインにするよう人々に促した。
本稿では、2020年1月1日から収集してきたcovid-19に関する最初のアラビア語ツイートデータセットについて述べる。
このデータセットは、研究者や政策立案者がパンデミックに関連するさまざまな社会問題を研究するのに役立つだろう。
行動の変化、情報共有、誤報、噂の拡散に関する他の多くのタスクも分析できる。
関連論文リスト
- "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - ArCorona: Analyzing Arabic Tweets in the Early Days of Coronavirus
(COVID-19) Pandemic [3.057212947792573]
我々は、新型コロナウイルスに関連するアラビア語のツイートを手動で注釈付けした最大のデータセットを提示する。
アノテーションガイドラインを記述し、データセットを分析し、効果的な機械学習とトランスフォーマーに基づく分類モデルを構築する。
論文 参考訳(メタデータ) (2020-12-02T19:05:25Z) - Global Sentiment Analysis Of COVID-19 Tweets Over Time [0.0]
TwitterのソーシャルネットワーキングサイトであるTwitterは、小説『コロナウイルス』に関するツイートがごく短期間で前例のない増加を見せた。
本稿では、コロナウイルスに関連するツイートのグローバルな感情分析と、異なる国の人々の感情が時間とともにどのように変化したかを示す。
論文 参考訳(メタデータ) (2020-10-27T12:10:10Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z) - GeoCoV19: A Dataset of Hundreds of Millions of Multilingual COVID-19
Tweets with Location Information [4.541389211258011]
GeoCoV19は、2020年2月1日から90日間に5億2400万件の多言語ツイートが投稿された大規模なTwitterデータセットです。
我々は、この大規模かつ多言語で位置決めされたソーシャルメディアデータは、この前例のない世界的な危機に社会がどう対処しているかを評価する研究コミュニティに力を与えることができると仮定する。
論文 参考訳(メタデータ) (2020-05-22T13:30:42Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
2019年の推計295億人が世界中でソーシャルメディアを利用している。
コロナウイルスの流行は、ソーシャルメディアの津波を引き起こした。
本稿では,Twitterから収集したデータに基づく大規模研究について述べる。
論文 参考訳(メタデータ) (2020-05-18T15:53:13Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
新型コロナウイルス感染症(COVID-19)のパンデミックは、政府に究極の課題を提示した。
米国では、新型コロナウイルス感染者が最も多い国で、全国的なソーシャルディスタンシングプロトコルが大統領によって実施されている。
本稿では,この対話型社会における前例のない破壊の社会的意義を,ソーシャルメディア上での人々の意見のマイニングによって発見することを目的とする。
論文 参考訳(メタデータ) (2020-04-21T13:02:38Z) - Mining Coronavirus (COVID-19) Posts in Social Media [3.04585143845864]
世界保健機関(WHO)は2020年3月11日、新型コロナウイルス(COVID-19)を世界的なパンデミックと位置づけた。
本稿では,最先端機械学習モデルを用いたソーシャルメディア利用者投稿から,新型コロナウイルスの陽性報告を自動的に検出する研究の予備的結果を報告する。
論文 参考訳(メタデータ) (2020-03-28T23:38:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。