Relativistic weak quantum gravity and its significance for the standard
model of particle physics
- URL: http://arxiv.org/abs/2110.02062v2
- Date: Tue, 15 Feb 2022 06:40:31 GMT
- Title: Relativistic weak quantum gravity and its significance for the standard
model of particle physics
- Authors: Tejinder P. Singh
- Abstract summary: There ought to exist a reformulation of quantum theory, even at energy scales much lower than Planck scale.
We have proposed such a formulation, by replacing 4D Minkowski spacetime by an octonionic space.
We do not need experiments at ever higher energies to understand the low energy standard model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There ought to exist a reformulation of quantum theory, even at energy scales
much lower than Planck scale, which does not depend on classical time. Such a
formulation is required also for the standard model of particle physics, at the
low energies at which it is currently observed. We have proposed such a
formulation, by replacing 4D Minkowski spacetime by an octonionic space. Doing
so allows us to naturally construct spinor states which describe quarks and
leptons having properties as in the standard model. We conclude that the
aforesaid reformulation of quantum theory helps understand why the standard
model is what it is. We do not need experiments at ever higher energies to
understand the low energy standard model. Instead, we need a better
understanding of the quantum nature of spacetime at low energies, such that the
quantum spacetime is consistent with the principle of quantum linear
superposition. In the present short review article, we give a summary of our
ongoing research programme which aims to address these issues.
Related papers
- Entropy production due to spacetime fluctuations [0.0]
We consider a non-relativistic quantum system interacting with gravitational waves.
We employ the consistent histories approach to quantum mechanics to define a fluctuation relation for this system.
As a result, thermodynamic entropy must be produced in the system due to its unavoidable interaction with the quantum fluctuations of spacetime.
arXiv Detail & Related papers (2024-07-30T20:52:32Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Interpretation of Quantum Theory and Cosmology [0.0]
We reconsider the problem of the interpretation of the Quantum Theory (QT) in the perspective of the entire universe.
For the Universe we adopt a variance of the LambdaCDM model with Omega=1, one single inflaton with an Higgs type potential, the initial time at t=minus infinite.
arXiv Detail & Related papers (2023-04-14T12:32:30Z) - On free fall of fermions and antifermions [0.0]
We propose a model describing spin-half quantum particles in curved spacetime.
We find that spin precesses in a normal Fermi frame, even in the absence of torsion.
We also find that (elementary) fermions and antifermions are indistinguishable in gravity.
arXiv Detail & Related papers (2022-10-13T15:35:36Z) - Relativistic Particle Motion and Quantum Optics in a Weak Gravitational
Field [0.0]
Long-baseline quantum experiments in space make it necessary to better understand the time evolution of relativistic quantum particles in a weakly varying gravitational field.
We explain why conventional treatments by traditional quantum optics and atomic physics may become inadequate when faced with issues related to locality, simultaneity, signaling, causality, etc.
Adding the effects of gravitation, we are led to Quantum Field Theory in Curved Spacetime (QFTCST)
This well-established theory should serve as the canonical reference theory to a large class of proposed space experiments testing the foundations of gravitation and quantum theory.
arXiv Detail & Related papers (2021-06-23T16:32:45Z) - The Entropic Dynamics of Relativistic Quantum Fields in Curved
Space-time [0.0]
We apply the Entropic Dynamics (ED) framework to construct a quantum dynamics for scalar fields in space-time.
Using a similar methodology, we construct a theory of quantum scalar fields in flat space-time that is relativistic, but not manifestly so.
We consider such a theory and discuss its plausibility as a candidate for a quantum gravity theory.
arXiv Detail & Related papers (2021-05-14T19:24:21Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.