Distillation Learning Guided by Image Reconstruction for One-Shot Medical Image Segmentation
- URL: http://arxiv.org/abs/2408.03616v1
- Date: Wed, 7 Aug 2024 08:17:34 GMT
- Title: Distillation Learning Guided by Image Reconstruction for One-Shot Medical Image Segmentation
- Authors: Feng Zhou, Yanjie Zhou, Longjie Wang, Yun Peng, David E. Carlson, Liyun Tu,
- Abstract summary: One-shot medical image segmentation (MIS) methods often struggle with registration errors and low-quality synthetic images.
We introduce a novel one-shot MIS framework based on knowledge distillation.
It allows the network to directly'see' real images through a distillation process guided by image reconstruction.
- Score: 12.33442990188044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional one-shot medical image segmentation (MIS) methods use registration networks to propagate labels from a reference atlas or rely on comprehensive sampling strategies to generate synthetic labeled data for training. However, these methods often struggle with registration errors and low-quality synthetic images, leading to poor performance and generalization. To overcome this, we introduce a novel one-shot MIS framework based on knowledge distillation, which allows the network to directly 'see' real images through a distillation process guided by image reconstruction. It focuses on anatomical structures in a single labeled image and a few unlabeled ones. A registration-based data augmentation network creates realistic, labeled samples, while a feature distillation module helps the student network learn segmentation from these samples, guided by the teacher network. During inference, the streamlined student network accurately segments new images. Evaluations on three public datasets (OASIS for T1 brain MRI, BCV for abdomen CT, and VerSe for vertebrae CT) show superior segmentation performance and generalization across different medical image datasets and modalities compared to leading methods. Our code is available at https://github.com/NoviceFodder/OS-MedSeg.
Related papers
- Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
In medical image segmentation, supervised deep networks' success comes at the cost of requiring abundant labeled data.
We propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs.
Our work's central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy.
arXiv Detail & Related papers (2021-10-05T15:28:42Z) - Recurrent Mask Refinement for Few-Shot Medical Image Segmentation [15.775057485500348]
We propose a new framework for few-shot medical image segmentation based on prototypical networks.
Our innovation lies in the design of two key modules: 1) a context relation encoder (CRE) that uses correlation to capture local relation features between foreground and background regions.
Experiments on two abdomen CT datasets and an abdomen MRI dataset show the proposed method obtains substantial improvement over the state-of-the-art methods.
arXiv Detail & Related papers (2021-08-02T04:06:12Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation [40.41161371507547]
We develop a data augmentation method for one-shot brain magnetic resonance imaging (MRI) image segmentation.
Our method exploits only one labeled MRI image (named atlas) and a few unlabeled images.
Our method outperforms the state-of-the-art one-shot medical segmentation methods.
arXiv Detail & Related papers (2021-02-03T12:28:04Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.