論文の概要: Using Psuedolabels for training Sentiment Classifiers makes the model
generalize better across datasets
- arxiv url: http://arxiv.org/abs/2110.02200v1
- Date: Tue, 5 Oct 2021 17:47:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 14:24:08.107092
- Title: Using Psuedolabels for training Sentiment Classifiers makes the model
generalize better across datasets
- Title(参考訳): Psuedolabelsを使ってSentiment Classifiersを訓練し、データセット間でモデルをより一般化する
- Authors: Natesh Reddy, Muktabh Mayank Srivastava
- Abstract要約: パブリックな感情分類APIでは、ドメイン間のデータアノテート能力に制限のある、さまざまなタイプのデータに対してうまく機能する分類器をどうやって設定すればよいのか?
我々は、このデータセット上の異なるドメインと擬似ラベルから大量の無注釈データが与えられた場合、異なるデータセットにまたがってよりよく一般化される感情分類器を訓練できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The problem statement addressed in this work is : For a public sentiment
classification API, how can we set up a classifier that works well on different
types of data, having limited ability to annotate data from across domains. We
show that given a large amount of unannotated data from across different
domains and pseudolabels on this dataset generated by a classifier trained on a
small annotated dataset from one domain, we can train a sentiment classifier
that generalizes better across different datasets.
- Abstract(参考訳): パブリックな感情分類APIでは、ドメイン間のデータアノテートに制限のある、さまざまなタイプのデータに対してうまく機能する分類器をどのように設定すればよいか。
異なる領域にまたがる無注データや、あるドメインから小さな注釈付きデータセットで訓練された分類器によって生成された疑似ラベルを多用すると、異なるデータセットにまたがってより一般化した感情分類器を訓練することができる。
関連論文リスト
- Towards Open-Domain Topic Classification [69.21234350688098]
ユーザが定義した分類をリアルタイムで受け入れるオープンドメイントピック分類システムを導入する。
ユーザは、任意の候補ラベルに対してテキストスニペットを分類し、Webインターフェースから即座にレスポンスを受け取ることができます。
論文 参考訳(メタデータ) (2023-06-29T20:25:28Z) - Automatic universal taxonomies for multi-domain semantic segmentation [1.4364491422470593]
複数のデータセットに対するセマンティックセグメンテーションモデルのトレーニングは、コンピュータビジョンコミュニティに最近多くの関心を呼んだ。
確立されたデータセットには 互いに互換性のないラベルがあります 野生の原理的推論を妨害します
我々は、反復的データセット統合による普遍的な構築によってこの問題に対処する。
論文 参考訳(メタデータ) (2022-07-18T08:53:17Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
多くの設定において、プライバシに関する懸念は、トレーニングデータサンプルのドメインラベルを取得することを禁止している。
本稿では,この問題に対するドメイン適応的アプローチを提案する。
提案手法は,ドメインラベルを使わずに,様々な領域一般化ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-12-09T08:57:01Z) - Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised
Pre-Training [67.71228426496013]
事前トレーニング中にターゲットドメインデータを使用することで,さまざまなセットアップで大幅なパフォーマンス向上が期待できる。
複数のドメインで事前トレーニングを行うことで、トレーニング中に見られないドメインのパフォーマンスの一般化が向上します。
論文 参考訳(メタデータ) (2021-04-02T12:53:15Z) - Simple multi-dataset detection [83.9604523643406]
複数の大規模データセット上で統合検出器を訓練する簡単な方法を提案する。
データセット固有のアウトプットを共通の意味分類に自動的に統合する方法を示す。
私たちのアプローチは手動の分類学の調整を必要としません。
論文 参考訳(メタデータ) (2021-02-25T18:55:58Z) - Unsupervised Label Refinement Improves Dataless Text Classification [48.031421660674745]
データレステキスト分類は、ラベル記述と組み合わせた文書にスコアを割り当てることで、文書を未確認のラベルに分類することができる。
有望ながら、それは重要なダウンストリームタスクごとにラベルセットの正確な説明に依存します。
この依存により、データレス分類器はラベル記述の選択に非常に敏感になり、実際にはデータレス分類の幅広い適用を妨げる。
論文 参考訳(メタデータ) (2020-12-08T03:37:50Z) - Adversarial Knowledge Transfer from Unlabeled Data [62.97253639100014]
本稿では,インターネット規模の未ラベルデータから知識を伝達し,分類器の性能を向上させるための新しいAdversarial Knowledge Transferフレームワークを提案する。
我々の手法の重要な新しい側面は、ラベル付けされていないソースデータは、ラベル付けされたターゲットデータと異なるクラスであることができ、個別のプリテキストタスクを定義する必要がないことである。
論文 参考訳(メタデータ) (2020-08-13T08:04:27Z) - Deep Domain-Adversarial Image Generation for Domain Generalisation [115.21519842245752]
マシンラーニングモデルは通常、ソースデータセットでトレーニングされたり、異なるディストリビューションのターゲットデータセットで評価されたりする際に、ドメインシフトの問題に悩まされる。
この問題を解決するために、ドメイン一般化(DG)手法は、訓練されたモデルが未知のドメインに一般化できるように、複数のソースドメインからのデータを活用することを目的としている。
我々はemphDeep Domain-Adversarial Image Generation (DDAIG)に基づく新しいDG手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T23:17:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。