論文の概要: Leveraging the Inductive Bias of Large Language Models for Abstract
Textual Reasoning
- arxiv url: http://arxiv.org/abs/2110.02370v1
- Date: Tue, 5 Oct 2021 21:40:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 09:18:18.128034
- Title: Leveraging the Inductive Bias of Large Language Models for Abstract
Textual Reasoning
- Title(参考訳): 抽象テキスト推論のための大規模言語モデルの帰納バイアスの活用
- Authors: Christopher Michael Rytting, David Wingate
- Abstract要約: GPT-3やT5のような大きな自然言語モデルは、様々な一般的なNLPタスクにおいて印象的な能力を示している。
このようなモデルに埋め込まれた知識は、従来のNLPタスクだけでなく、シンボリック推論エンジンを訓練する非伝統的なタスクにも有用な帰納的バイアスをもたらすことを示す。
- 参考スコア(独自算出の注目度): 3.616948583169635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large natural language models (such as GPT-3 or T5) demonstrate impressive
abilities across a range of general NLP tasks. Here, we show that the knowledge
embedded in such models provides a useful inductive bias, not just on
traditional NLP tasks, but also in the nontraditional task of training a
symbolic reasoning engine. We observe that these engines learn quickly and
generalize in a natural way that reflects human intuition. For example,
training such a system to model block-stacking might naturally generalize to
stacking other types of objects because of structure in the real world that has
been partially captured by the language describing it. We study several
abstract textual reasoning tasks, such as object manipulation and navigation,
and demonstrate multiple types of generalization to novel scenarios and the
symbols that comprise them. We also demonstrate the surprising utility of
\textit{compositional learning}, where a learner dedicated to mastering a
complicated task gains an advantage by training on relevant simpler tasks
instead of jumping straight to the complicated task.
- Abstract(参考訳): GPT-3やT5のような大きな自然言語モデルは、様々な一般的なNLPタスクにおいて印象的な能力を示している。
このようなモデルに埋め込まれた知識は、従来のNLPタスクだけでなく、シンボリック推論エンジンを訓練する非伝統的なタスクにも有用な帰納的バイアスをもたらすことを示す。
我々はこれらのエンジンが人間の直感を反映した自然な方法で素早く学習し、一般化することを観察する。
例えば、ブロックスタッキングをモデル化するためのそのようなシステムを訓練することは、言語によって部分的に捉えられた実世界の構造のために、自然に他の種類のオブジェクトを積み重ねることに一般化するかもしれない。
オブジェクトの操作やナビゲーションなどの抽象的なテキスト推論タスクについて検討し、新しいシナリオやそれらを構成するシンボルに対する多種類の一般化を実証する。
また,複雑なタスクを習得する学習者が,複雑なタスクに直行するのではなく,より簡単なタスクを学習することで,そのメリットを享受できる,という,‘textit{compositional learning}’の驚くべき有用性を示す。
関連論文リスト
- Learning with Language-Guided State Abstractions [58.199148890064826]
高次元観測空間における一般化可能なポリシー学習は、よく設計された状態表現によって促進される。
我々の手法であるLGAは、自然言語の監視と言語モデルからの背景知識を組み合わせて、目に見えないタスクに適した状態表現を自動構築する。
シミュレーションされたロボットタスクの実験では、LGAは人間によって設計されたものと同様の状態抽象化をもたらすが、そのほんの少しの時間で得られる。
論文 参考訳(メタデータ) (2024-02-28T23:57:04Z) - Deep Natural Language Feature Learning for Interpretable Prediction [1.6114012813668932]
本稿では,メインの複雑なタスクを仲介しやすいサブタスクの集合に分解する手法を提案する。
本手法では,これらの質問に対する回答からなるベクトルで各例を表現できる。
我々は,学生のオープンエンド数学試験に対する回答の不整合性の検出と,気候変動と農業学に関する科学的論文の体系的な文献レビューのための要約のスクリーニングという,2つのまったく異なるタスクにこの手法を適用した。
論文 参考訳(メタデータ) (2023-11-09T21:43:27Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Learning Symbolic Rules over Abstract Meaning Representations for
Textual Reinforcement Learning [63.148199057487226]
本稿では,汎用的な意味一般化とルール誘導システムを組み合わせて,解釈可能なルールをポリシーとして学習するモジュール型 NEuroSymbolic Textual Agent (NESTA) を提案する。
実験の結果,NESTA法は,未確認テストゲームや少ないトレーニングインタラクションから学習することで,深層強化学習技術よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-07-05T23:21:05Z) - Language Models Implement Simple Word2Vec-style Vector Arithmetic [32.2976613483151]
言語モデル(LM)に対する主要な批判は、その調査性である。
本稿では,その大きさと複雑さにもかかわらず,LMは単純なベクトル演算方式を用いて,いくつかのリレーショナルタスクを解くことの証拠を提示する。
論文 参考訳(メタデータ) (2023-05-25T15:04:01Z) - Pre-Training to Learn in Context [138.0745138788142]
言語モデルが文脈で学習するために明示的に訓練されていないため、コンテキスト内学習の能力は十分に活用されていない。
In-Context Learning のための PICL (Pre-training for In-Context Learning) を提案する。
実験の結果,PICLはベースラインよりも効率が高く,タスクの汎用性が高く,約4倍のパラメータを持つ言語モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-05-16T03:38:06Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
目的と観測を埋め込みのシーケンスとして表現する模倣学習の枠組みを述べる。
このフレームワークは様々な環境にまたがって効果的な一般化を可能にすることを実証する。
新たなゴールや新しいシーンを含むテストタスクでは、言語モデルによる初期化ポリシーはタスク完了率を43.6%改善する。
論文 参考訳(メタデータ) (2022-02-03T18:55:52Z) - Target Languages (vs. Inductive Biases) for Learning to Act and Plan [13.820550902006078]
私は、ニューラルアーキテクチャのバイアスから表現が現れるのではなく、既知のセマンティクスを持つ特定のターゲット言語で学習される、異なる学習アプローチを明確に表現します。
論文と講演の目的は、これらのアイデアを明確化し、対象言語の設計が不可欠である広い文脈に配置し、それらを行動と計画の学習の文脈で説明することである。
論文 参考訳(メタデータ) (2021-09-15T10:24:13Z) - Ask Your Humans: Using Human Instructions to Improve Generalization in
Reinforcement Learning [32.82030512053361]
本研究では、自然言語の指示や行動軌跡の形で、ステップバイステップの人間の実演を行うことを提案する。
人間のデモは、最も複雑なタスクを解決するのに役立ちます。
また、自然言語を組み込むことで、ゼロショット設定で未確認のタスクを一般化できることがわかった。
論文 参考訳(メタデータ) (2020-11-01T14:39:46Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
大規模な事前学習言語モデル(LM)は推論能力を得るが、制御は困難である。
本研究では,暗黙的,事前学習された知識と明示的な自然言語文を併用して,体系的推論を確実に行うことができることを示す。
我々の研究は、シンプルな自然言語文を追加することで、モデルを簡単に修正できるユーザと対話することで、常に改善されるオープンドメインシステムへの道を開く。
論文 参考訳(メタデータ) (2020-06-11T17:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。