論文の概要: Feature Selection by a Mechanism Design
- arxiv url: http://arxiv.org/abs/2110.02419v1
- Date: Tue, 5 Oct 2021 23:53:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 07:41:39.365480
- Title: Feature Selection by a Mechanism Design
- Title(参考訳): 機構設計による特徴選択
- Authors: Xingwei Hu
- Abstract要約: プレイヤーが候補であり、ペイオフ関数がパフォーマンス測定である選択問題について検討する。
理論上、無関係な特徴はゲーム内のダミープレイヤーと等価であり、全てのモデリング状況には何も寄与しない。
メカニズム設計において、最終的なゴールは、期待されるモデル性能と、期待される個々の限界効果の総和とを完全に一致させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In constructing an econometric or statistical model, we pick relevant
features or variables from many candidates. A coalitional game is set up to
study the selection problem where the players are the candidates and the payoff
function is a performance measurement in all possible modeling scenarios. Thus,
in theory, an irrelevant feature is equivalent to a dummy player in the game,
which contributes nothing to all modeling situations. The hypothesis test of
zero mean contribution is the rule to decide a feature is irrelevant or not. In
our mechanism design, the end goal perfectly matches the expected model
performance with the expected sum of individual marginal effects. Within a
class of noninformative likelihood among all modeling opportunities, the
matching equation results in a specific valuation for each feature. After
estimating the valuation and its standard deviation, we drop any candidate
feature if its valuation is not significantly different from zero. In the
simulation studies, our new approach significantly outperforms several popular
methods used in practice, and its accuracy is robust to the choice of the
payoff function.
- Abstract(参考訳): 計量モデルや統計モデルを構築する際、多くの候補から関連する特徴や変数を選択する。
プレイヤーが候補であり、報酬関数が全ての可能なモデリングシナリオにおけるパフォーマンス測定である選択問題を研究するために連立ゲームが設定される。
したがって、理論上、無関係な特徴はゲーム内のダミープレイヤーと等価であり、全てのモデリング状況には何も寄与しない。
ゼロ平均寄与の仮説テストは、ある特徴が無関係かどうかを決定する規則である。
私たちのメカニズム設計では、最終ゴールは、期待されるモデルパフォーマンスと、期待される個々の限界効果の合計と完全に一致します。
すべてのモデリング機会の中で非形式的可能性のクラスの中で、マッチング方程式は各特徴に対する特定の評価をもたらす。
評価値とその標準偏差を見積もった後、評価値が0と大きく異なる場合、任意の候補特徴を除外します。
シミュレーション研究において,本手法はいくつかの一般的な手法よりも優れており,その精度はペイオフ関数の選択に頑健である。
関連論文リスト
- A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
大規模言語モデル(LLM)における最初の形式的確率的評価フレームワークを紹介する。
モデルの出力分布に関する高い確率保証を持つ新しい指標を導出する。
私たちのメトリクスはアプリケーションに依存しないので、デプロイ前にモデル機能についてより信頼性の高い見積を行うことができます。
論文 参考訳(メタデータ) (2024-10-04T15:44:23Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
政策の長期的業績に関する不確実性の定量化は、シーケンシャルな意思決定タスクを解決するために重要である。
モデルに基づくベイズ強化学習の観点から問題を考察する。
本稿では,値分布関数を学習するモデルに基づくアルゴリズムであるEpicemic Quantile-Regression(EQR)を提案する。
論文 参考訳(メタデータ) (2023-08-12T14:59:19Z) - Confidence-Based Model Selection: When to Take Shortcuts for
Subpopulation Shifts [119.22672589020394]
モデル信頼度がモデル選択を効果的に導くことができるConfidence-based Model Selection (CosMoS)を提案する。
我々はCosMoSを,データ分散シフトのレベルが異なる複数のテストセットを持つ4つのデータセットで評価した。
論文 参考訳(メタデータ) (2023-06-19T18:48:15Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
機械学習では、潜在的に多くの競合モデルから有望なモデルを選択し、その一般化性能を評価することが重要な課題である。
本稿では,評価セットの予測性能に基づいて選択された複数のモデルに対して,有効な低信頼境界を求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-24T13:28:43Z) - Predicting is not Understanding: Recognizing and Addressing
Underspecification in Machine Learning [47.651130958272155]
下位仕様とは、ドメイン内の精度で区別できない複数のモデルの存在を指す。
我々は、不特定概念を形式化し、それを特定し、部分的に対処する方法を提案する。
論文 参考訳(メタデータ) (2022-07-06T11:20:40Z) - Dynamic Instance-Wise Classification in Correlated Feature Spaces [15.351282873821935]
典型的な機械学習環境では、すべてのテストインスタンスの予測は、モデルトレーニング中に発見された機能の共通サブセットに基づいている。
それぞれのテストインスタンスに対して個別に評価する最適な特徴を順次選択し、分類精度に関して更なる改善が得られないことを判断すると、選択プロセスが終了して予測を行う新しい手法を提案する。
提案手法の有効性, 一般化性, 拡張性について, 多様なアプリケーション領域の様々な実世界のデータセットで説明する。
論文 参考訳(メタデータ) (2021-06-08T20:20:36Z) - Quantum-Assisted Feature Selection for Vehicle Price Prediction Modeling [0.0]
本研究では,一般平均情報係数やピアソン相関係数などの二元モデルとして検索を符号化する指標について検討する。
我々は,新しい指標を用いて合成データの最適部分集合を求めるための0.9の精度スコアを得る。
その結果、量子支援ルーチンを活用することで、予測モデル出力の品質を高めるソリューションが見つかることが分かりました。
論文 参考訳(メタデータ) (2021-04-08T20:48:44Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Better Model Selection with a new Definition of Feature Importance [8.914907178577476]
特徴の重要性は、各入力特徴がモデル予測にとってどれほど重要かを測定することを目的としている。
本稿では,モデル選択のための新しいツリーモデル説明手法を提案する。
論文 参考訳(メタデータ) (2020-09-16T14:32:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。