Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks
- URL: http://arxiv.org/abs/2110.02628v1
- Date: Wed, 6 Oct 2021 10:03:32 GMT
- Title: Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks
- Authors: Emanuele La Malfa, Gabriele La Malfa, Giuseppe Nicosia, Vito Latora
- Abstract summary: Complex Network Theory (CNT) represents Deep Neural Networks (DNNs) as directed weighted graphs to study them as dynamical systems.
We introduce metrics for nodes/neurons and layers, namely Nodes Strength and Layers Fluctuation.
Our framework distills trends in the learning dynamics and separates low from high accurate networks.
- Score: 1.0869257688521987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we interpret Deep Neural Networks with Complex Network Theory.
Complex Network Theory (CNT) represents Deep Neural Networks (DNNs) as directed
weighted graphs to study them as dynamical systems. We efficiently adapt CNT
measures to examine the evolution of the learning process of DNNs with
different initializations and architectures: we introduce metrics for
nodes/neurons and layers, namely Nodes Strength and Layers Fluctuation. Our
framework distills trends in the learning dynamics and separates low from high
accurate networks. We characterize populations of neural networks (ensemble
analysis) and single instances (individual analysis). We tackle standard
problems of image recognition, for which we show that specific learning
dynamics are indistinguishable when analysed through the solely Link-Weights
analysis. Further, Nodes Strength and Layers Fluctuations make unprecedented
behaviours emerge: accurate networks, when compared to under-trained models,
show substantially divergent distributions with the greater extremity of
deviations. On top of this study, we provide an efficient implementation of the
CNT metrics for both Convolutional and Fully Connected Networks, to fasten the
research in this direction.
Related papers
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
arXiv Detail & Related papers (2024-09-23T17:57:58Z) - Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures.
In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning.
arXiv Detail & Related papers (2024-04-17T08:42:42Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
Spiking Neural Networks (SNNs) have become an essential paradigm in neuroscience and artificial intelligence.
Recent advances in literature have studied the network representations of deep neural networks.
arXiv Detail & Related papers (2024-03-19T05:37:26Z) - Riemannian Residual Neural Networks [58.925132597945634]
We show how to extend the residual neural network (ResNet)
ResNets have become ubiquitous in machine learning due to their beneficial learning properties, excellent empirical results, and easy-to-incorporate nature when building varied neural networks.
arXiv Detail & Related papers (2023-10-16T02:12:32Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
We use Complex Network Theory to represent Deep Neural Networks (DNNs) as directed weighted graphs.
We introduce metrics to study DNNs as dynamical systems, with a granularity that spans from weights to layers, including neurons.
We show that our metrics discriminate low vs. high performing networks.
arXiv Detail & Related papers (2022-09-12T16:26:04Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.