Crop and Couple: cardiac image segmentation using interlinked specialist
networks
- URL: http://arxiv.org/abs/2402.09156v1
- Date: Wed, 14 Feb 2024 13:14:04 GMT
- Title: Crop and Couple: cardiac image segmentation using interlinked specialist
networks
- Authors: Abbas Khan, Muhammad Asad, Martin Benning, Caroline Roney, Gregory
Slabaugh
- Abstract summary: We propose a novel strategy that performs segmentation using specialist networks that focus on a single anatomy.
Given an input long-axis cardiac MR image, our method performs a ternary segmentation in the first stage to identify these anatomical regions.
The specialist networks are coupled through an attention mechanism that performs cross-attention to interlink features from different anatomies.
- Score: 0.5452923068355806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnosis of cardiovascular disease using automated methods often relies on
the critical task of cardiac image segmentation. We propose a novel strategy
that performs segmentation using specialist networks that focus on a single
anatomy (left ventricle, right ventricle, or myocardium). Given an input
long-axis cardiac MR image, our method performs a ternary segmentation in the
first stage to identify these anatomical regions, followed by cropping the
original image to focus subsequent processing on the anatomical regions. The
specialist networks are coupled through an attention mechanism that performs
cross-attention to interlink features from different anatomies, serving as a
soft relative shape prior. Central to our approach is an additive attention
block (E-2A block), which is used throughout our architecture thanks to its
efficiency.
Related papers
- A Comparative Analysis of U-Net-based models for Segmentation of Cardiac MRI [0.0]
This paper aims to explore the application of deep learning techniques in the semantic segmentation of Cardiac short-axis MRI (Magnetic Resonance Imaging) images.
The focus centers on implementing various architectures that are derivatives of U-Net, to effectively isolate specific parts of the heart for comprehensive anatomical and functional analysis.
arXiv Detail & Related papers (2024-01-18T13:51:20Z) - Region-based Contrastive Pretraining for Medical Image Retrieval with
Anatomic Query [56.54255735943497]
Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
arXiv Detail & Related papers (2023-05-09T16:46:33Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Cardiac Adipose Tissue Segmentation via Image-Level Annotations [8.705311618392368]
We develop a two-stage deep learning framework for cardiac adipose tissue segmentation using image-level annotations on OCT images of human cardiac substrates.
Our study bridges the gap between the demand on automatic tissue analysis and the lack of high-quality pixel-wise annotations.
arXiv Detail & Related papers (2022-06-09T02:55:35Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - Automatic Identification of the End-Diastolic and End-Systolic Cardiac
Frames from Invasive Coronary Angiography Videos [6.203906656404265]
The identification of proper image frames at the end-diastolic (ED) and end-systolic (ES) frames during the review of invasive coronary angiograms is important.
The current identification method primarily relies on visual interpretation, making it not only time-consuming but also less reproducible.
We propose a new method to automatically identify angiographic image frames associated with the ED and ES cardiac phases by using the trajectories of key vessel points.
arXiv Detail & Related papers (2021-10-06T15:16:55Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Anatomy Prior Based U-net for Pathology Segmentation with Attention [11.266069499113966]
We propose an anatomy prior based framework, which combines the U-net segmentation network with the attention technique.
We propose a neighborhood penalty strategy to gauge the inclusion relationship between the myocardium and the myocardial infarction and no-reflow areas.
Results show that our framework is effective in pathological area segmentation.
arXiv Detail & Related papers (2020-11-17T16:52:29Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.