論文の概要: Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
- arxiv url: http://arxiv.org/abs/2110.02855v1
- Date: Wed, 6 Oct 2021 15:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 14:23:24.477164
- Title: Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
- Title(参考訳): 画像ベース欠陥検出のための完全畳み込みクロススケールフロー
- Authors: Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, Bastian Wandt
- Abstract要約: 欠陥部分の画像サンプルを必要とせずに自動欠陥検出の問題に取り組む。
本稿では,異なるスケールの複数の特徴写像を共同で処理する,完全畳み込み型クロススケール正規化フロー(CS-Flow)を提案する。
ベンチマークデータセットであるMagnetic Tile DefectsとMVTec ADは、15クラス中4クラスで100%AUROCを示す。
- 参考スコア(独自算出の注目度): 24.0966076588569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In industrial manufacturing processes, errors frequently occur at
unpredictable times and in unknown manifestations. We tackle the problem of
automatic defect detection without requiring any image samples of defective
parts. Recent works model the distribution of defect-free image data, using
either strong statistical priors or overly simplified data representations. In
contrast, our approach handles fine-grained representations incorporating the
global and local image context while flexibly estimating the density. To this
end, we propose a novel fully convolutional cross-scale normalizing flow
(CS-Flow) that jointly processes multiple feature maps of different scales.
Using normalizing flows to assign meaningful likelihoods to input samples
allows for efficient defect detection on image-level. Moreover, due to the
preserved spatial arrangement the latent space of the normalizing flow is
interpretable which enables to localize defective regions in the image. Our
work sets a new state-of-the-art in image-level defect detection on the
benchmark datasets Magnetic Tile Defects and MVTec AD showing a 100% AUROC on 4
out of 15 classes.
- Abstract(参考訳): 工業生産プロセスでは、エラーは予測不能な時間と未知の表出で頻繁に発生する。
欠陥部分の画像サンプルを必要とせずに自動欠陥検出の問題に取り組む。
最近の研究は、強い統計的事前または過度に単純化されたデータ表現を用いて、欠陥のない画像データの分布をモデル化している。
対照的に,我々のアプローチでは,大域的および局所的な画像コンテキストを柔軟に推定しながら,細粒度表現を扱う。
そこで本研究では,異なるスケールの複数特徴写像を共同処理する,完全畳み込み型クロススケール正規化フロー(CS-Flow)を提案する。
正規化フローを使用して意味のある確率を入力サンプルに割り当てることで、画像レベルでの効率的な欠陥検出が可能になる。
さらに、保存空間配置のため、正規化フローの潜時空間を解釈可能とし、画像内の欠陥領域を局所化することができる。
本研究は,画像レベルの欠陥検出における新たな最先端をベンチマークデータセットに設定し,磁気タイル欠陥とmvtec adを15クラス中4クラスで100%aurocを示した。
関連論文リスト
- RecDiffusion: Rectangling for Image Stitching with Diffusion Models [53.824503710254206]
画像縫合整形のための新しい拡散学習フレームワーク textbfRecDiffusion を提案する。
このフレームワークは運動拡散モデル(MDM)を組み合わせて運動場を生成し、縫合された画像の不規則な境界から幾何学的に修正された中間体へ効果的に遷移する。
論文 参考訳(メタデータ) (2024-03-28T06:22:45Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - Anomaly Detection in Automated Fibre Placement: Learning with Data
Limitations [3.103778949672542]
自動繊維配置における欠陥検出と局所化のための包括的枠組みを提案する。
我々のアプローチは教師なしのディープラーニングと古典的なコンピュータビジョンアルゴリズムを組み合わせる。
様々な表面の問題を効率よく検出し、訓練のために複合部品のイメージを少なくする。
論文 参考訳(メタデータ) (2023-07-15T22:13:36Z) - Unsupervised Visual Defect Detection with Score-Based Generative Model [17.610722842950555]
我々は、教師なしの視覚的欠陥検出とローカライゼーションタスクに焦点をあてる。
近年のスコアベース生成モデルに基づく新しいフレームワークを提案する。
提案手法を複数のデータセット上で評価し,その有効性を実証する。
論文 参考訳(メタデータ) (2022-11-29T11:06:29Z) - FastFlow: Unsupervised Anomaly Detection and Localization via 2D
Normalizing Flows [18.062328700407726]
本稿では,ResNet や Vision Transformer など,任意の機能抽出用プラグインモジュールとしてFastFlowを提案する。
トレーニングフェーズでは、FastFlowは入力された視覚的特徴を抽出可能な分布に変換することを学び、推論フェーズにおける異常を認識する可能性を得る。
提案手法は推論効率の高い異常検出において99.4%のAUCを実現する。
論文 参考訳(メタデータ) (2021-11-15T11:15:02Z) - Focus Your Distribution: Coarse-to-Fine Non-Contrastive Learning for
Anomaly Detection and Localization [19.23452967227186]
本稿では,教師なし異常検出と位置推定のための新しいフレームワークを提案する。
本手法は, 粗いアライメントプロセスを用いて, 正規画像から高密度かつコンパクトな分布を学習することを目的としている。
本フレームワークは, 種々の実世界の欠陥の検出に有効であり, 産業用無監督異常検出における新たな最先端技術を実現する。
論文 参考訳(メタデータ) (2021-10-09T10:44:58Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Same Same But DifferNet: Semi-Supervised Defect Detection with
Normalizing Flows [24.734388664558708]
畳み込みニューラルネットワークによって抽出された特徴の記述性を利用して、その密度を推定する。
これらの可能性に基づいて、欠陥を示すスコアリング関数を開発する。
本稿では,新しいMVTec ADとMagnetic Tile Defectsデータセットに対する既存のアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-08-28T10:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。