Exact Enforcement of Temporal Continuity in Sequential Physics-Informed
Neural Networks
- URL: http://arxiv.org/abs/2403.03223v2
- Date: Thu, 7 Mar 2024 06:12:56 GMT
- Title: Exact Enforcement of Temporal Continuity in Sequential Physics-Informed
Neural Networks
- Authors: Pratanu Roy and Stephen Castonguay
- Abstract summary: We introduce a method to enforce continuity between successive time segments via a solution ansatz.
The method is tested for a number of benchmark problems involving both linear and non-linear PDEs.
The numerical experiments conducted with the proposed method demonstrated superior convergence and accuracy over both traditional PINNs and the soft-constrained counterparts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of deep learning methods in scientific computing represents a
potential paradigm shift in engineering problem solving. One of the most
prominent developments is Physics-Informed Neural Networks (PINNs), in which
neural networks are trained to satisfy partial differential equations (PDEs).
While this method shows promise, the standard version has been shown to
struggle in accurately predicting the dynamic behavior of time-dependent
problems. To address this challenge, methods have been proposed that decompose
the time domain into multiple segments, employing a distinct neural network in
each segment and directly incorporating continuity between them in the loss
function of the minimization problem. In this work we introduce a method to
exactly enforce continuity between successive time segments via a solution
ansatz. This hard constrained sequential PINN (HCS-PINN) method is simple to
implement and eliminates the need for any loss terms associated with temporal
continuity. The method is tested for a number of benchmark problems involving
both linear and non-linear PDEs. Examples include various first order time
dependent problems in which traditional PINNs struggle, namely advection,
Allen-Cahn, and Korteweg-de Vries equations. Furthermore, second and third
order time-dependent problems are demonstrated via wave and Jerky dynamics
examples, respectively. Notably, the Jerky dynamics problem is chaotic, making
the problem especially sensitive to temporal accuracy. The numerical
experiments conducted with the proposed method demonstrated superior
convergence and accuracy over both traditional PINNs and the soft-constrained
counterparts.
Related papers
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - TSONN: Time-stepping-oriented neural network for solving partial
differential equations [1.9061608251056779]
This work integrates time-stepping method with deep learning to solve PDE problems.
The convergence of model training is significantly improved by following the trajectory of the pseudo time-stepping process.
Our results show that the proposed method achieves stable training and correct results in many problems that standard PINNs fail to solve.
arXiv Detail & Related papers (2023-10-25T09:19:40Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Physics-informed neural network simulation of multiphase poroelasticity
using stress-split sequential training [0.0]
We present a framework for solving problems governed by partial differential equations (PDEs) based on elastic networks.
We find that the approach converges to solve problems of porosci, Barry-Scier's injection-production problem, and a two-phase drainage problem.
arXiv Detail & Related papers (2021-10-06T20:09:09Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.