論文の概要: A Survey on Evidential Deep Learning For Single-Pass Uncertainty
Estimation
- arxiv url: http://arxiv.org/abs/2110.03051v1
- Date: Wed, 6 Oct 2021 20:13:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-09 11:32:44.491288
- Title: A Survey on Evidential Deep Learning For Single-Pass Uncertainty
Estimation
- Title(参考訳): 単一パス不確実性推定のための証拠深層学習に関する調査
- Authors: Dennis Ulmer
- Abstract要約: 情報深層学習(Evidential Deep Learning): 馴染みのないデータに対して、彼らは“知らないこと”を認め、以前の信念に戻る。
この調査は、Evidential Deep Learningという概念に基づいた、別のモデルのクラスを読者に親しみやすくすることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popular approaches for quantifying predictive uncertainty in deep neural
networks often involve a set of weights or models, for instance via ensembling
or Monte Carlo Dropout. These techniques usually produce overhead by having to
train multiple model instances or do not produce very diverse predictions. This
survey aims to familiarize the reader with an alternative class of models based
on the concept of Evidential Deep Learning: For unfamiliar data, they admit
"what they don't know" and fall back onto a prior belief. Furthermore, they
allow uncertainty estimation in a single model and forward pass by
parameterizing distributions over distributions. This survey recapitulates
existing works, focusing on the implementation in a classification setting.
Finally, we survey the application of the same paradigm to regression problems.
We also provide a reflection on the strengths and weaknesses of the mentioned
approaches compared to existing ones and provide the most central theoretical
results in order to inform future research.
- Abstract(参考訳): ディープニューラルネットワークにおける予測の不確かさを定量化するための一般的なアプローチは、例えば ensembling や monte carlo dropout といった、重みやモデルセットを含むことが多い。
これらの手法は通常、複数のモデルインスタンスをトレーニングしたり、非常に多様な予測を行なわなくてもオーバーヘッドが発生する。
この調査は、Evidential Deep Learningという概念に基づいた、別のモデルのクラスを読者に親しみやすくすることを目的としている。
さらに、単一のモデルにおける不確実性の推定と、分布上の分布のパラメータ化によるフォワードパスを可能にする。
この調査は、分類設定における実装に焦点をあて、既存の作業を再カプセル化する。
最後に、回帰問題に対する同じパラダイムの適用について調査する。
また,上記のアプローチの強みと弱みを,既存のアプローチと比較して考察し,今後の研究を知らせるために最も中心的な理論結果を提供する。
関連論文リスト
- Unlearning or Concealment? A Critical Analysis and Evaluation Metrics for Unlearning in Diffusion Models [7.9993879763024065]
既存の手法で未学習に使用する目的関数が,対象概念の分離に繋がることを示す。
現在の手法の非効率性は、主に特定のプロンプト集合の生成確率の減少に焦点を絞ったものである。
CRS(Concept Retrieval Score)とCCS(Concept Confidence Score)の2つの新しい評価指標を紹介した。
論文 参考訳(メタデータ) (2024-09-09T14:38:31Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Identifying Drivers of Predictive Aleatoric Uncertainty [2.5311562666866494]
本稿では,予測的アレタリック不確実性を説明するための簡単なアプローチを提案する。
我々は、ガウス出力分布にニューラルネットワークを適用することにより、不確実性を予測分散として推定する。
我々は、実世界のデータセットを含むニュアンスなベンチマーク分析を用いて、この結果の定量化を行う。
論文 参考訳(メタデータ) (2023-12-12T13:28:53Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
現実の世界における予測モデルの適用を防ぐための最も一般的な問題の1つは一般化の欠如である。
ニューラルネットワーク分類モデルにより生成された特定の予測の不確かさを推定する新しい手法を提案する。
提案手法は,この予測に対応するロジット値の分布に基づいて,特定の予測の信頼性を推定する。
論文 参考訳(メタデータ) (2022-10-14T12:32:50Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - A General Framework for Distributed Inference with Uncertain Models [14.8884251609335]
異種エージェントのネットワークを用いた分散分類の問題について検討する。
我々は、エージェントの不確実性を可能性に組み込む不確実性モデルの概念に基づいて構築する。
論文 参考訳(メタデータ) (2020-11-20T22:17:12Z) - Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
Multi-Headed Auxiliary Networks [23.100727871427367]
本稿では,従来のニューラル線形モデルのトレーニング手順が,アウト・オブ・ディストリビューション・インプットに対する不確実性を大幅に過小評価していることを示す。
下流タスクに有用な予測不確実性を捉える新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-21T02:46:05Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。