論文の概要: Single- to multi-fidelity history-dependent learning with uncertainty quantification and disentanglement: application to data-driven constitutive modeling
- arxiv url: http://arxiv.org/abs/2507.13416v1
- Date: Thu, 17 Jul 2025 12:45:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.092278
- Title: Single- to multi-fidelity history-dependent learning with uncertainty quantification and disentanglement: application to data-driven constitutive modeling
- Title(参考訳): 不確実な定量化と非絡み合いを伴う単-多-多-忠実履歴依存学習--データ駆動構成モデルへの応用
- Authors: Jiaxiang Yi, Bernardo P. Ferreira, Miguel A. Bessa,
- Abstract要約: データ駆動学習は、履歴に依存した多相性データを考えるために一般化され、不確実性を定量化し、データノイズ(アラート的不確実性)から切り離す。
提案手法の汎用性と汎用性は,複数の不確実性(雑音)を含むベイズ型データ駆動モデリングシナリオに適用することによって実証される。
これにより、様々な科学・工学分野における将来の現実世界の応用の機会が開ける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven learning is generalized to consider history-dependent multi-fidelity data, while quantifying epistemic uncertainty and disentangling it from data noise (aleatoric uncertainty). This generalization is hierarchical and adapts to different learning scenarios: from training the simplest single-fidelity deterministic neural networks up to the proposed multi-fidelity variance estimation Bayesian recurrent neural networks. The versatility and generality of the proposed methodology are demonstrated by applying it to different data-driven constitutive modeling scenarios that include multiple fidelities with and without aleatoric uncertainty (noise). The method accurately predicts the response and quantifies model error while also discovering the noise distribution (when present). This opens opportunities for future real-world applications in diverse scientific and engineering domains; especially, the most challenging cases involving design and analysis under uncertainty.
- Abstract(参考訳): データ駆動学習は、疫学的な不確実性を定量化し、データノイズ(アラート的不確実性)からそれを遠ざけながら、歴史に依存した多要素データを考えるために一般化される。
この一般化は階層的であり、最も単純な単一忠実性決定論的ニューラルネットワークのトレーニングから、提案された多重忠実性分散推定ベイズ繰り返しニューラルネットワークまで、さまざまな学習シナリオに適応する。
提案手法の汎用性と汎用性は、アレータリック不確実性(ノイズ)を伴う複数の忠実さを含む様々なデータ駆動構成モデリングシナリオに適用することによって実証される。
この方法は、応答を正確に予測し、そのノイズ分布(現在)を検出しながらモデル誤差を定量化する。
これは、様々な科学や工学分野、特に不確実性の下で設計や分析に関わる最も困難なケースにおいて、将来の現実世界の応用の機会を開く。
関連論文リスト
- Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties [0.0]
実世界のデータは、不完全な測定やデータ生成プロセスに関する不完全な知識から生じる、アレラトリックな不確実性を含んでいる。
平均分散推定(MVE)ネットワークは、このような不確実性を学ぶことができるが、過度な適合を避けるためには、アドホックな正規化戦略を必要とする。
ベイズニューラルネットワークを用いて分散ネットワークを訓練し、その結果のモデルが平均推定を改善しつつ、アレタリックおよびてんかんの不確かさを解き放つことを示す。
論文 参考訳(メタデータ) (2025-05-05T15:50:52Z) - Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model [5.624791703748109]
不確かさの定量化は強化学習と深層学習の重要な側面である。
本研究では,1つのモデルによる深層ニューラルネットワークのアンサンブルの分散を明示的に推定する新しい手法である文脈類似蒸留を提案する。
提案手法は,様々なアウト・オブ・ディストリビューション検出ベンチマークとスパース・リワード強化学習環境にまたがって実証的に検証する。
論文 参考訳(メタデータ) (2025-03-14T12:09:58Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - How to Combine Variational Bayesian Networks in Federated Learning [0.0]
フェデレートラーニングにより、複数のデータセンターが機密データを公開することなく、協力的に中央モデルをトレーニングできる。
決定論的モデルは高い予測精度を達成することができ、キャリブレーションの欠如と不確実性を定量化する能力は、安全クリティカルなアプリケーションには問題となる。
変分ベイズニューラルネットワークに対する様々なアグリゲーションスキームの効果について検討する。
論文 参考訳(メタデータ) (2022-06-22T07:53:12Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
本稿では,特徴量線形変調の概念に基づく暗黙のアンサンブル手法であるFiLM-Ensembleを紹介する。
単一ディープネットワークのネットワークアクティベーションをFiLMで変調することにより、高多様性のモデルアンサンブルを得る。
我々は、FiLM-Ensembleが他の暗黙のアンサンブル法よりも優れており、ネットワークの明示的なアンサンブルの上限に非常に近いことを示す。
論文 参考訳(メタデータ) (2022-05-31T18:33:15Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
Errors-in-Variablesの概念がベイズ的深部回帰においてどのように利用できるかを示す。
様々なシミュレートされた実例に沿ったアプローチについて論じる。
論文 参考訳(メタデータ) (2021-05-19T12:37:02Z) - Multivariate Deep Evidential Regression [77.34726150561087]
不確実性を認識するニューラルネットワークによる新しいアプローチは、従来の決定論的手法よりも有望である。
本稿では,レグレッションベースニューラルネットワークからアレータ性およびてんかん性不確かさを抽出する手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T12:20:18Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
ニューラルネットワークにおけるドロップアウト層に対するサンプリング分布の変更により,不確実性評価の品質が向上することを示す。
主要なアイデアは、ニューロン間のデータ駆動相関を計算し、最大多様なニューロンを含むサンプルを生成する、という2つの主要なステップで構成されています。
論文 参考訳(メタデータ) (2020-03-06T15:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。