論文の概要: PRRS Outbreak Prediction via Deep Switching Auto-Regressive
Factorization Modeling
- arxiv url: http://arxiv.org/abs/2110.03147v1
- Date: Thu, 7 Oct 2021 02:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-09 07:14:32.152797
- Title: PRRS Outbreak Prediction via Deep Switching Auto-Regressive
Factorization Modeling
- Title(参考訳): 自己回帰因子化モデルによるPRRSアウトブレイク予測
- Authors: Mohammadsadegh Shamsabardeh, Bahar Azari, Beatriz Mart\'inez-L\'opez
- Abstract要約: 畜産業界における流行予測のための流行分析枠組みを提案する。
我々は、豚業界で最も費用がかかるウイルス感染症、すなわちPRRSウイルスの研究に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an epidemic analysis framework for the outbreak prediction in the
livestock industry, focusing on the study of the most costly and viral
infectious disease in the swine industry -- the PRRS virus. Using this
framework, we can predict the PRRS outbreak in all farms of a swine production
system by capturing the spatio-temporal dynamics of infection transmission
based on the intra-farm pig-level virus transmission dynamics, and inter-farm
pig shipment network. We simulate a PRRS infection epidemic based on the
shipment network and the SEIR epidemic model using the statistics extracted
from real data provided by the swine industry. We develop a hierarchical
factorized deep generative model that approximates high dimensional data by a
product between time-dependent weights and spatially dependent low dimensional
factors to perform per farm time series prediction. The prediction results
demonstrate the ability of the model in forecasting the virus spread
progression with average error of NRMSE = 2.5\%.
- Abstract(参考訳): 畜産業界における流行予測のための流行解析フレームワークを提案し,豚業界で最も費用のかかるウイルス性感染症であるprrsウイルスの研究に焦点を当てた。
この枠組みを用いることで,豚生産システムの全農場におけるprrの発生を,豚内レベルウイルス感染動態と豚間出荷ネットワークに基づく感染伝播の時空間的動態を捉えることにより予測できる。
豚産業界が提供した実データから抽出した統計データを用いて,出荷ネットワークとseir流行モデルに基づいてprrs感染をシミュレートする。
本研究では,時間依存重みと空間依存低次元因子の積によって高次元データに近似した階層的因子化深層生成モデルを開発した。
予測結果は、nrmse = 2.5\%の平均誤差でウイルス拡散の進行を予測できるモデルの能力を示している。
関連論文リスト
- Modeling Epidemic Spread: A Gaussian Process Regression Approach [0.7374726900469741]
本稿では,Gaussian Process regression(GPR)に基づく新しいデータ駆動手法を提案する。
本稿では、GPRを用いて、イギリスで新型コロナウイルス流行時に収集された実世界感染データを用いて、感染拡大をモデル化し、予測する例を示す。
論文 参考訳(メタデータ) (2023-12-14T22:45:01Z) - Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
感染パラメータの確率密度を学習する問題に対して,新しい強力な計算手法を適用した。
ニューラルネットワークを用いて、2020年にベルリンで発生した新型コロナウイルスの感染拡大に関するデータにODEモデルを調整します。
本手法は,感染の簡易SIRモデルにおいて,本手法の真の後部への収束を示すとともに,縮小データセット上での学習能力を実証する。
論文 参考訳(メタデータ) (2023-12-05T21:34:59Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting
Epidemics [2.705025060422369]
感染性疾患は、世界中でヒトの病気や死亡の原因となっている。
感染拡大の予測は、利害関係者が目の前の状況に対処するのに役立つ。
論文 参考訳(メタデータ) (2022-06-21T19:31:25Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
疫学領域における新型コロナウイルスの流行を予測するための機械学習(ML)アプローチの比較分析を行った。
これらの結果から,短期的政策の意思決定を支援するMLアルゴリズムの利点が明らかになった。
論文 参考訳(メタデータ) (2021-02-11T11:57:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
我々は,スーパーマーケットの小売データを,センチネルバスケットの識別を通じてインフルエンザの代替信号とみなす。
SVR(Support Vector Regression)モデルを用いて、季節性インフルエンザ発生の予測を行います。
論文 参考訳(メタデータ) (2020-12-08T16:30:43Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
我々は、インフルエンザとCOVID-19が共存する新しいシナリオに、歴史的疾患予測モデルを「操る」ことができる神経伝達学習アーキテクチャであるCALI-Netを提案する。
我々の実験は、現在のパンデミックに歴史的予測モデルを適用することに成功していることを示している。
論文 参考訳(メタデータ) (2020-09-23T22:35:43Z) - Simulation of Covid-19 epidemic evolution: are compartmental models
really predictive? [0.0]
本稿では,無症候性および死亡個体群に富んだSIR疫学モデルが,流行の進展を確実に予測できるかどうかを論じる。
粒子群最適化(PSO)に基づく機械学習手法を提案する。
予測における散乱の分析は、モデル予測がトレーニングに使用されるデータセットのサイズに非常に敏感であり、さらにデータが必要であることを示している。
論文 参考訳(メタデータ) (2020-04-14T08:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。