論文の概要: Detecting Autism Spectrum Disorders with Machine Learning Models Using
Speech Transcripts
- arxiv url: http://arxiv.org/abs/2110.03281v1
- Date: Thu, 7 Oct 2021 09:10:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 15:58:49.601177
- Title: Detecting Autism Spectrum Disorders with Machine Learning Models Using
Speech Transcripts
- Title(参考訳): 音声文を用いた機械学習モデルによる自閉症スペクトラム障害の検出
- Authors: Vikram Ramesh and Rida Assaf
- Abstract要約: 自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、子どもの相互作用、コミュニケーション、他者との交流に影響を及ぼす神経発達障害として定義される。
ASDを正確に診断する現在の方法は、侵襲的、時間的、退屈である。
音声を使った機械学習モデル、顔からのコンピュータービジョン、網膜、脳MRI画像など、この疾患を正確にタイムリーに検出する新しい技術が急速に発展しつつある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autism spectrum disorder (ASD) can be defined as a neurodevelopmental
disorder that affects how children interact, communicate and socialize with
others. This disorder can occur in a broad spectrum of symptoms, with varying
effects and severity. While there is no permanent cure for ASD, early detection
and proactive treatment can substantially improve the lives of many children.
Current methods to accurately diagnose ASD are invasive, time-consuming, and
tedious. They can also be subjective perspectives of a number of clinicians
involved, including pediatricians, speech pathologists, psychologists, and
psychiatrists. New technologies are rapidly emerging that include machine
learning models using speech, computer vision from facial, retinal, and brain
MRI images of patients to accurately and timely detect this disorder. Our
research focuses on computational linguistics and machine learning using speech
data from TalkBank, the world's largest spoken language database. We used data
of both ASD and Typical Development (TD) in children from TalkBank to develop
machine learning models to accurately predict ASD. More than 50 features were
used from specifically two datasets in TalkBank to run our experiments using
five different classifiers. Logistic Regression and Random Forest models were
found to be the most effective for each of these two main datasets, with an
accuracy of 0.75. These experiments confirm that while significant
opportunities exist for improving the accuracy, machine learning models can
reliably predict ASD status in children for effective diagnosis.
- Abstract(参考訳): 自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、子どもの相互作用、コミュニケーション、他者との交流に影響を及ぼす神経発達障害である。
この疾患は様々な症状で起こり、様々な影響と重症度がある。
ASDの恒久的な治療法はないが、早期発見と予防治療は多くの子供の生活を著しく改善することができる。
ASDを正確に診断する現在の方法は、侵襲的、時間的、退屈である。
それらはまた、小児科医、言語病理学者、心理学者、精神科医を含む多くの臨床医の主観的視点でもある。
音声を使った機械学習モデル、顔からのコンピュータービジョン、網膜、脳MRI画像など、この疾患を正確にタイムリーに検出する新しい技術が急速に発展しつつある。
本研究では,世界最大の音声言語データベースであるTalkBankの音声データを用いた計算言語学と機械学習に焦点を当てた。
本研究では,TalkBank の子どもにおける ASD と typical Development (TD) のデータを用いて,ASD を正確に予測する機械学習モデルを開発した。
TalkBankの2つのデータセットから50以上の機能を使用して、5つの異なる分類器を使って実験を実行しました。
ロジスティック回帰とランダムフォレストモデルがこれらの2つの主要データセットのそれぞれに最も有効であり、精度は 0.75 である。
これらの実験は、精度を向上させるための重要な機会がある一方で、機械学習モデルは、効果的な診断のために、小児のASD状態を確実に予測できることを示した。
関連論文リスト
- Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition [47.550391816383794]
本稿では,音声・視覚自閉症の行動認識の新たな課題について紹介する。
社会的行動認識は、AIによる自閉症スクリーニング研究において、これまで省略されてきた重要な側面である。
データセット、コード、事前トレーニングされたモデルをリリースします。
論文 参考訳(メタデータ) (2024-03-22T22:52:35Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Comparison of Probabilistic Deep Learning Methods for Autism Detection [0.0]
自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、現在世界中で普及している神経発達障害の一つ。
この疾患の早期発見は、発症治療に役立ち、正常な生活を導くのに役立つ。
論文 参考訳(メタデータ) (2023-03-09T17:49:37Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - Language-Assisted Deep Learning for Autistic Behaviors Recognition [13.200025637384897]
本稿では,視覚に基づく問題行動認識システムにおいて,従来の手法よりも高い精度で性能を向上できることを示す。
問題行動の種類毎に「自由利用」言語記述を取り入れた2分岐マルチモーダルディープラーニングフレームワークを提案する。
実験結果から,言語指導を付加することで,自閉症の行動認識タスクに明らかなパフォーマンス向上がもたらされることが示された。
論文 参考訳(メタデータ) (2022-11-17T02:58:55Z) - Action-based Early Autism Diagnosis Using Contrastive Feature Learning [2.922007656878633]
自閉症スペクトラム障害(Autism Spectrum disorder, ASD)は、神経疾患である。
その主な症状は、(言語および/または非言語)コミュニケーションの困難さ、硬直的/反復的な行動である。
本稿では,簡単なアクションビデオクリップを用いて,自閉症の診断を自動化するための学習的アプローチを提案する。
論文 参考訳(メタデータ) (2022-09-12T16:31:34Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
生波形で訓練された自己教師型アルゴリズムは有望な候補である。
We show that Wav2Vec 2.0 learns brain-like representations with little as 600 hours of unlabelled speech。
論文 参考訳(メタデータ) (2022-06-03T17:01:46Z) - Development of an autism screening classification model for toddlers [0.0]
自閉症スペクトラム障害 ASDは、コミュニケーション、社会的相互作用、反復行動の課題に関連する神経発達障害である。
本研究は, 乳幼児の早期検診に寄与し, ASD 特性を有する者を同定し, 正式な臨床診断を行おうとする。
論文 参考訳(メタデータ) (2021-09-29T09:07:39Z) - Detecting Autism Spectrum Disorder using Machine Learning [3.2861753207533937]
逐次最小最適化(SMO)ベースのサポートベクトルマシン(SVM)分類器は、他のすべてのベンチマーク機械学習アルゴリズムより優れている。
Relief Attributesアルゴリズムは、ASDデータセットで最も重要な属性を特定するのに最適である。
論文 参考訳(メタデータ) (2020-09-30T08:33:12Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
資金不足、資格のある専門家の欠如、そして修正方法に対する信頼度の低いことが、AMDのリアルタイム診断に影響を及ぼす主要な問題である。
我々のチームは、子どもの視線活動の情報に基づいて、ALDの確率を予測するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-21T20:22:55Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
ASD分類のための4次元畳み込み深層学習手法を提案する。
F1スコアは0.71、F1スコアは0.65であるのに対し、我々は4Dニューラルネットワークと畳み込みリカレントモデルを採用する。
論文 参考訳(メタデータ) (2020-04-21T17:19:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。