AnoSeg: Anomaly Segmentation Network Using Self-Supervised Learning
- URL: http://arxiv.org/abs/2110.03396v1
- Date: Thu, 7 Oct 2021 12:36:36 GMT
- Title: AnoSeg: Anomaly Segmentation Network Using Self-Supervised Learning
- Authors: Jouwon Song, Kyeongbo Kong, Ye-In Park, Seong-Gyun Kim, Suk-Ju Kang
- Abstract summary: This paper proposes a novel anomaly segmentation network (AnoSeg) that can directly generate an accurate anomaly map using self-supervised learning.
For highly accurate anomaly segmentation, the proposed AnoSeg considers three novel techniques: Anomaly data generation based on hard augmentation, self-supervised learning with pixel-wise and adversarial losses, and coordinate channel concatenation.
Our experiments show that the proposed method outperforms the state-of-the-art anomaly detection and anomaly segmentation methods for the MVTec AD dataset.
- Score: 11.234583962952891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly segmentation, which localizes defective areas, is an important
component in large-scale industrial manufacturing. However, most recent
researches have focused on anomaly detection. This paper proposes a novel
anomaly segmentation network (AnoSeg) that can directly generate an accurate
anomaly map using self-supervised learning. For highly accurate anomaly
segmentation, the proposed AnoSeg considers three novel techniques: Anomaly
data generation based on hard augmentation, self-supervised learning with
pixel-wise and adversarial losses, and coordinate channel concatenation. First,
to generate synthetic anomaly images and reference masks for normal data, the
proposed method uses hard augmentation to change the normal sample
distribution. Then, the proposed AnoSeg is trained in a self-supervised
learning manner from the synthetic anomaly data and normal data. Finally, the
coordinate channel, which represents the pixel location information, is
concatenated to an input of AnoSeg to consider the positional relationship of
each pixel in the image. The estimated anomaly map can also be utilized to
improve the performance of anomaly detection. Our experiments show that the
proposed method outperforms the state-of-the-art anomaly detection and anomaly
segmentation methods for the MVTec AD dataset. In addition, we compared the
proposed method with the existing methods through the intersection over union
(IoU) metric commonly used in segmentation tasks and demonstrated the
superiority of our method for anomaly segmentation.
Related papers
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - PNI : Industrial Anomaly Detection using Position and Neighborhood
Information [6.316693022958221]
We propose a new algorithm, textbfPNI, which estimates the normal distribution using conditional probability given neighborhood features.
We conducted experiments on the MVTec AD benchmark dataset and achieved state-of-the-art performance, with textbf99.56% and textbf98.98% AUROC scores in anomaly detection and localization.
arXiv Detail & Related papers (2022-11-22T23:45:27Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Attention Map-guided Two-stage Anomaly Detection using Hard Augmentation [12.272975892517039]
Anomaly detection is a task that recognizes whether an input sample is included in the distribution of a target normal class or an anomaly class.
This paper proposes a novel two-stage network consisting of an attention network and an anomaly detection GAN.
arXiv Detail & Related papers (2021-03-31T07:04:07Z) - Unsupervised Anomaly Segmentation using Image-Semantic Cycle Translation [31.396372591714695]
Unsupervised anomaly segmentation (UAS) is a promising field in the medical imaging community.
In this paper, we introduce the semantic space of healthy anatomy in the process of modeling healthy-data distribution.
Experimental results on the BraTS and ISLES databases show that the proposed approach achieves significantly superior performance.
arXiv Detail & Related papers (2021-03-16T14:15:30Z) - Pixel-wise Anomaly Detection in Complex Driving Scenes [30.884375526254836]
We present a pixel-wise anomaly detection framework that uses uncertainty maps to improve anomaly detection.
Our approach works as a general framework around already trained segmentation networks.
Top-2 performance across a range of different anomaly datasets shows the robustness of our approach to handling different anomaly instances.
arXiv Detail & Related papers (2021-03-09T14:26:20Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation [30.499125737099185]
Anomaly detection involves making a binary decision as to whether an input image contains an anomaly.
We extend support vector data description (SVDD) to the patch-based method using self-supervised learning.
Our results indicate the efficacy of the proposed method and its potential for industrial application.
arXiv Detail & Related papers (2020-06-29T14:19:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.