A Cutting-plane Method for Semidefinite Programming with Potential
Applications on Noisy Quantum Devices
- URL: http://arxiv.org/abs/2110.03400v1
- Date: Thu, 7 Oct 2021 12:42:23 GMT
- Title: A Cutting-plane Method for Semidefinite Programming with Potential
Applications on Noisy Quantum Devices
- Authors: Jakub Marecek and Albert Akhriev
- Abstract summary: We show how to leverage quantum speed-up of an eigensolver in speeding up an SDP solver utilizing the cutting-plane method.
We show that the RCP method is very robust to noise in the boundary oracle, which may make RCP suitable for use even on noisy quantum devices.
- Score: 7.99536002595393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an increasing interest in quantum algorithms for optimization
problems. Within convex optimization, interior-point methods and other recently
proposed quantum algorithms are non-trivial to implement on noisy quantum
devices. Here, we discuss how to utilize an alternative approach to convex
optimization, in general, and semidefinite programming (SDP), in particular.
This approach is based on a randomized variant of the cutting-plane method. We
show how to leverage quantum speed-up of an eigensolver in speeding up an SDP
solver utilizing the cutting-plane method. For the first time, we demonstrate a
practical implementation of a randomized variant of the cutting-plane method
for semidefinite programming on instances from SDPLIB, a well-known benchmark.
Furthermore, we show that the RCP method is very robust to noise in the
boundary oracle, which may make RCP suitable for use even on noisy quantum
devices.
Related papers
- Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs.
USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables.
arXiv Detail & Related papers (2023-12-19T02:27:22Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
We propose a technique for optimizing parameterized circuits in variational quantum algorithms.
We illustrate our approach on the example of the quantum approximate optimization algorithm (QAOA) applied to the max-$k$-cut problem.
arXiv Detail & Related papers (2023-10-16T12:56:22Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Bayesian Optimization for QAOA [0.0]
We present a Bayesian optimization procedure to optimise a quantum circuit.
We show that our approach allows for a significant reduction in the number of calls to the quantum circuit.
Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-09-08T13:59:47Z) - The Quantum Approximate Optimization Algorithm performance with low
entanglement and high circuit depth [0.0]
Variational quantum algorithms constitute one of the most widespread methods for using current noisy quantum computers.
We investigate entanglement's role in these methods for solving optimization problems.
We conclude that entanglement plays a minor role in the MaxCut and Exact Cover 3 problems studied here.
arXiv Detail & Related papers (2022-07-07T16:21:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Variational Quantum Algorithms for Semidefinite Programming [3.481985817302898]
A semidefinite program (SDP) is a convex optimization problem with applications in operations research, optimization, quantum information science, and beyond.
We propose variational quantum algorithms for approximately solving SDPs.
arXiv Detail & Related papers (2021-12-16T13:10:48Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.