Bayesian Optimization for QAOA
- URL: http://arxiv.org/abs/2209.03824v3
- Date: Fri, 28 Jul 2023 15:19:57 GMT
- Title: Bayesian Optimization for QAOA
- Authors: Simone Tibaldi, Davide Vodola, Edoardo Tignone and Elisa Ercolessi
- Abstract summary: We present a Bayesian optimization procedure to optimise a quantum circuit.
We show that our approach allows for a significant reduction in the number of calls to the quantum circuit.
Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) adopts a hybrid
quantum-classical approach to find approximate solutions to variational
optimization problems. In fact, it relies on a classical subroutine to optimize
the parameters of a quantum circuit. In this work we present a Bayesian
optimization procedure to fulfil this optimization task, and we investigate its
performance in comparison with other global optimizers. We show that our
approach allows for a significant reduction in the number of calls to the
quantum circuit, which is typically the most expensive part of the QAOA. We
demonstrate that our method works well also in the regime of slow circuit
repetition rates, and that few measurements of the quantum ansatz would already
suffice to achieve a good estimate of the energy. In addition, we study the
performance of our method in the presence of noise at gate level, and we find
that for low circuit depths it is robust against noise. Our results suggest
that the method proposed here is a promising framework to leverage the hybrid
nature of QAOA on the noisy intermediate-scale quantum devices.
Related papers
- Scalable circuit depth reduction in feedback-based quantum optimization with a quadratic approximation [0.6834295298053009]
We propose a new feedback law for parameter determination by introducing the second-order approximation with respect to time interval.
We demonstrate that our proposal significantly reduces circuit depth, with its linear scaling with the problem size smaller by more than an order of magnitude.
arXiv Detail & Related papers (2024-07-25T06:44:41Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth [0.32985979395737786]
The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm for Near-term Intermediate-Scale Quantum computers (NISQ)
This paper presents an investigation into the impact realistic noise on the classical vectors.
We find that while there is no significant difference in the performance of classicals in a state simulation, the Adam and AMSGrads perform best in the presence of shot noise.
arXiv Detail & Related papers (2023-07-19T17:22:44Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes [0.0]
Variational quantum algorithms (VQAs) represent a promising approach to utilizing current quantum computing infrastructures.
We propose the quantum Broyden adaptive natural gradient (qBang) approach, a novel that aims to distill the best aspects of existing approaches.
arXiv Detail & Related papers (2023-04-27T00:06:48Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.