Co-VeGAN: Complex-Valued Generative Adversarial Network for Compressive
Sensing MR Image Reconstruction
- URL: http://arxiv.org/abs/2002.10523v3
- Date: Thu, 24 Sep 2020 15:50:10 GMT
- Title: Co-VeGAN: Complex-Valued Generative Adversarial Network for Compressive
Sensing MR Image Reconstruction
- Authors: Bhavya Vasudeva, Puneesh Deora, Saumik Bhattacharya, Pyari Mohan
Pradhan
- Abstract summary: We propose a novel framework based on a complex-valued adversarial network (Co-VeGAN) to process complex-valued input.
Our model can process complex-valued input, which enables it to perform high-quality reconstruction of the CS-MR images.
- Score: 8.856953486775716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressive sensing (CS) is widely used to reduce the acquisition time of
magnetic resonance imaging (MRI). Although state-of-the-art deep learning based
methods have been able to obtain fast, high-quality reconstruction of CS-MR
images, their main drawback is that they treat complex-valued MRI data as
real-valued entities. Most methods either extract the magnitude from the
complex-valued entities or concatenate them as two real-valued channels. In
both the cases, the phase content, which links the real and imaginary parts of
the complex-valued entities, is discarded. In order to address the fundamental
problem of real-valued deep networks, i.e. their inability to process
complex-valued data, we propose a novel framework based on a complex-valued
generative adversarial network (Co-VeGAN). Our model can process complex-valued
input, which enables it to perform high-quality reconstruction of the CS-MR
images. Further, considering that phase is a crucial component of
complex-valued entities, we propose a novel complex-valued activation function,
which is sensitive to the phase of the input. Extensive evaluation of the
proposed approach on different datasets using various sampling masks
demonstrates that the proposed model significantly outperforms the existing
CS-MRI reconstruction techniques in terms of peak signal-to-noise ratio as well
as structural similarity index. Further, it uses significantly fewer trainable
parameters to do so, as compared to the real-valued deep learning based
methods.
Related papers
- TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
This study presents an innovative conditional guided diffusion model, named as TC-KANRecon.
It incorporates the Multi-Free U-KAN (MF-UKAN) module and a dynamic clipping strategy.
Experimental results demonstrate that the proposed method outperforms other MRI reconstruction methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2024-08-11T06:31:56Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - HUMUS-Net: Hybrid unrolled multi-scale network architecture for
accelerated MRI reconstruction [38.0542877099235]
HUMUS-Net is a hybrid architecture that combines the beneficial implicit bias and efficiency of convolutions with the power of Transformer blocks in an unrolled and multi-scale network.
Our network establishes new state of the art on the largest publicly available MRI dataset, the fastMRI dataset.
arXiv Detail & Related papers (2022-03-15T19:26:29Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
arXiv Detail & Related papers (2021-10-07T14:03:00Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI
Reconstruction [9.55767753037496]
We investigate end-to-end complex-valued convolutional neural networks for image reconstruction in lieu of two-channel real-valued networks.
We find that complex-valued CNNs with complex-valued convolutions provide superior reconstructions compared to real-valued convolutions with the same number of trainable parameters.
arXiv Detail & Related papers (2020-04-03T19:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.