Suppressing information storage in a structured thermal bath:
Objectivity and non-Markovianity
- URL: http://arxiv.org/abs/2110.03490v1
- Date: Thu, 7 Oct 2021 14:16:00 GMT
- Title: Suppressing information storage in a structured thermal bath:
Objectivity and non-Markovianity
- Authors: Wilson S. Martins, Diogo O. Soares-Pinto
- Abstract summary: Non-Markovian information can be captured by non-Markovian witnesses.
We show how such behavior suppresses the classic plateau in Partial Information Plot (PIP) from the paradigm of quantum Darwinism.
In addition to the system point of view, we show the impossibility of encoding accessible information for measurement in the environment for any model limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum systems interacting with environments tend to have their information
lost from transmission through the correlations generated with the degrees of
freedom of the environment. For situations where we have non- Markovian
environments, the information contained in the environment may return to the
system and such effect can be captured by non-Markovian witnesses. In the
present work, we use a central qubit coupled to a spin chain with Ising
interactions subject to a magnetic field, i.e., a central spin model, and solve
the exact dynamics of a system subject to dephasing dynamics via Kraus
operators. For such we use two witnesses to analyze the presence of
non-Markovianity: the BLP trace-based measure and the conditional past-future
correlator (CPF). Furthermore, we see how such behavior suppresses the classic
plateau in Partial Information Plot (PIP) from the paradigm of quantum
Darwinism, as well as objective information from Spectrum Broadcast Structure
(SBS). In addition to the system point of view, we show the impossibility of
encoding accessible information for measurement in the environment for any
model limit.
Related papers
- Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Open quantum system in the indefinite environment [13.979213066536394]
In this paper, we investigate the interference engineering of the open quantum system.
The environment is made indefinite either through the use of an interferometer or the introduction of auxiliary qubits.
arXiv Detail & Related papers (2023-07-13T07:52:48Z) - High-dimensional monitoring and the emergence of realism via multiple observers [41.94295877935867]
Correlation is the basic mechanism of every measurement model.
We introduce a model that interpolates between weak and strong non-selective measurements for qudits.
arXiv Detail & Related papers (2023-05-13T13:42:19Z) - Dynamical Transition of Operator Size Growth in Quantum Systems Embedded
in an Environment [6.659260341668616]
We predict a transition in quantum systems with all-to-all interactions accompanied by an environment.
The transition is driven by the competition between the system intrinsic and environment propelled scramblings and the environment induced dissipation.
Our study sheds light on the fundamental behavior of quantum systems in the presence of an environment.
arXiv Detail & Related papers (2022-11-07T13:21:50Z) - Quantum information spreading in random spin chains with topological
order [0.0]
Tripartite mutual information (TMI) based on operator-based entanglement entropy (EE) is an efficient tool for measuring them.
We study random spin chains that exhibit phase transitions accompanying non-trivial change in topological properties.
Quench dynamics of the EE and TMI display interesting behaviors providing essential perspective concerning encoding of quantum information.
arXiv Detail & Related papers (2022-05-06T04:26:52Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Unveiling non-Markovian spacetime signalling in open quantum systems
with long-range tensor network dynamics [0.0]
We use a Matrix Product State representation of the quantum state of a system and its environment to keep track of the bath explicitly.
We predict a non-Markovian dynamics where long-range couplings induce correlations into the environment.
The environment dynamics can be naturally extracted from our method and shine a light on long time feedback effects that are responsible for the observed non-Markovian recurrences in the eigen-populations of the system.
arXiv Detail & Related papers (2021-07-23T13:28:08Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.