論文の概要: Using Contrastive Learning and Pseudolabels to learn representations for
Retail Product Image Classification
- arxiv url: http://arxiv.org/abs/2110.03639v1
- Date: Thu, 7 Oct 2021 17:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 16:00:23.720076
- Title: Using Contrastive Learning and Pseudolabels to learn representations for
Retail Product Image Classification
- Title(参考訳): コントラスト学習とPseudolabelsを用いた小売商品画像分類のための表現学習
- Authors: Muktabh Mayank Srivastava
- Abstract要約: 本研究では,Convnetのバックボーン全体を微調整して商品イメージの分類を行うために,コントラスト学習と擬似ラベルに基づく雑音学習を用いて,精度の高い表現を学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retail product Image classification problems are often few shot
classification problems, given retail product classes cannot have the type of
variations across images like a cat or dog or tree could have. Previous works
have shown different methods to finetune Convolutional Neural Networks to
achieve better classification accuracy on such datasets. In this work, we try
to address the problem statement : Can we pretrain a Convolutional Neural
Network backbone which yields good enough representations for retail product
images, so that training a simple logistic regression on these representations
gives us good classifiers ? We use contrastive learning and pseudolabel based
noisy student training to learn representations that get accuracy in order of
finetuning the entire Convnet backbone for retail product image classification.
- Abstract(参考訳): 小売商品のイメージ分類の問題はしばしばショット分類の問題であり、小売商品のクラスは猫や犬、木のような画像にまたがるバリエーションのタイプを持つことができない。
これまでの研究では、データセットの分類精度を向上させるために、畳み込みニューラルネットワークを微調整する様々な方法が示されてきた。
本研究では,問題ステートメントに対処しようと試みている。 畳み込みニューラルネットワークバックボーンを事前トレーニングすることは可能で,小売製品イメージの十分な表現が得られるため,これらの表現に対する単純なロジスティック回帰のトレーニングは,優れた分類子をもたらすか?
コントラスト学習と疑似ラベルに基づくノイズ学習を用いて,商品画像分類のためのconvnetバックボーン全体を微調整する精度の高い表現を学習する。
関連論文リスト
- Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
継続的な学習には、データ分散の継続的な変化に対応するためのモデルが必要である。
本稿では,大規模言語モデルと画像生成モデルの組み合わせが有用であることを示す。
トレーニング済みネットワークのバックボーンは、下流の連続学習問題に有用な表現を学習できることがわかった。
論文 参考訳(メタデータ) (2024-03-12T06:29:54Z) - Discriminative Class Tokens for Text-to-Image Diffusion Models [107.98436819341592]
自由形式のテキストの表現可能性を利用した非侵襲的な微調整手法を提案する。
本手法は,従来の微調整法と比較して高速で,クラス内の画像の収集を必要としない。
i)標準拡散モデルよりも正確で高品質な生成画像,(ii)低リソース環境でのトレーニングデータの拡張,および(iii)誘導分類器の訓練に使用されるデータ情報を明らかにする。
論文 参考訳(メタデータ) (2023-03-30T05:25:20Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
従来のニューラルネットワーク分類器は、最先端の生成モデルに匹敵する高品質な画像を生成することができることを示す。
マスクをベースとした再構成モジュールを提案し, 意味的勾配を意識し, 可視画像の合成を行う。
また,本手法は,画像テキスト基盤モデルに関して,テキスト・画像生成にも適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T11:25:35Z) - Understanding invariance via feedforward inversion of discriminatively
trained classifiers [30.23199531528357]
過去の研究では、出力ログに余計な視覚的詳細が残っていることが判明した。
極めて高い忠実度を再現するフィードフォワードインバージョンモデルを開発する。
私たちのアプローチはBigGANをベースにしており、1ホットクラスのラベルの代わりにロジットのコンディショニングを行います。
論文 参考訳(メタデータ) (2021-03-15T17:56:06Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
本稿では,学習ラベルの提供するものよりも細かな表現を学習する問題に対処する。
粗いラベルと下層の細粒度潜在空間を併用することにより、カテゴリレベルの検索手法の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-25T19:06:26Z) - Increasing the Robustness of Semantic Segmentation Models with
Painting-by-Numbers [39.95214171175713]
我々は,物体の形状に対するネットワークバイアスを増大させることにより,出力を改善することができる画像分類からの洞察に基づいて構築する。
我々の基本的な考え方は、RGBトレーニング画像の一部を偽画像でアルファブレンドすることであり、各クラスラベルには、固定されたランダムに選択された色が与えられる。
各種ネットワークバックボーン,MobileNet-V2,ResNets,Xceptionを用いたDeepLabv3+のトレーニングスキーマの有効性を実証し,Cityscapesデータセットで評価した。
論文 参考訳(メタデータ) (2020-10-12T07:42:39Z) - Background Splitting: Finding Rare Classes in a Sea of Background [55.03789745276442]
我々は,少数の稀なカテゴリの画像分類のための,高精度な深層モデルの訓練という現実的な問題に焦点をあてる。
これらのシナリオでは、ほとんどの画像はデータセットの背景カテゴリに属します(データセットの95%は背景です)。
非バランスなデータセットをトレーニングするための標準的な微調整アプローチと最先端アプローチの両方が、この極端な不均衡の存在下で正確な深層モデルを生成していないことを実証する。
論文 参考訳(メタデータ) (2020-08-28T23:05:15Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z) - Continual Local Replacement for Few-shot Learning [13.956960291580938]
少数ショット学習の目標は,1つないし少数のトレーニングデータに基づいて,新しいクラスを認識可能なモデルを学習することにある。
1)新しいクラスの優れた特徴表現が欠けていること、(2)ラベル付きデータの一部が真のデータ分布を正確に表現できないこと、である。
データ不足問題に対処するために,新たな局所的置換戦略を提案する。
論文 参考訳(メタデータ) (2020-01-23T04:26:21Z) - Bag of Tricks for Retail Product Image Classification [0.0]
各種小売商品画像分類データセットの深層学習モデルの精度を高めるための様々な手法を提案する。
Local-Concepts-Accumulation (LCA)層と呼ばれる新しいニューラルネットワーク層は、複数のデータセット間で一貫したゲインを提供する。
小売商品の識別精度を高めるための他の方法として、Instagram-pretrained Convnet と Maximum Entropy があげられる。
論文 参考訳(メタデータ) (2020-01-12T20:20:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。