論文の概要: Active Learning for Multi-class Image Classification
- arxiv url: http://arxiv.org/abs/2505.06825v1
- Date: Sun, 11 May 2025 03:25:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.057696
- Title: Active Learning for Multi-class Image Classification
- Title(参考訳): 多クラス画像分類のためのアクティブラーニング
- Authors: Thien Nhan Vo,
- Abstract要約: 画像分類における基本的なボトルネックは、分類器を訓練するために必要な多くのトレーニング例である。
能動的学習を用いることで,CNN分類器を戦略的に選択することで,学習例の数を減らし,CNN分類器を教えることができる。
画像分類問題に対して,能動学習が有効なアルゴリズムであることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A principle bottleneck in image classification is the large number of training examples needed to train a classifier. Using active learning, we can reduce the number of training examples to teach a CNN classifier by strategically selecting examples. Assigning values to image examples using different uncertainty metrics allows the model to identify and select high-value examples in a smaller training set size. We demonstrate results for digit recognition and fruit classification on the MNIST and Fruits360 data sets. We formally compare results for four different uncertainty metrics. Finally, we observe active learning is also effective on simpler (binary) classification tasks, but marked improvement from random sampling is more evident on more difficult tasks. We show active learning is a viable algorithm for image classification problems.
- Abstract(参考訳): 画像分類における基本的なボトルネックは、分類器を訓練するために必要な多くのトレーニング例である。
能動的学習を用いることで,CNN分類器を戦略的に選択することで,学習例の数を減らし,CNN分類器を教えることができる。
異なる不確実性メトリクスを使用して画像例に値を割り当てることで、より小さなトレーニングセットサイズで、高価値な例を特定し、選択することができる。
我々は,MNISTデータセットとFruits360データセットを用いて,数字認識と果実分類の結果を示す。
4つの異なる不確実性指標の結果を正式に比較する。
最後に、より単純な(バイナリな)分類タスクでもアクティブラーニングが有効であるが、より難しいタスクでは、ランダムサンプリングによる顕著な改善がより顕著である。
画像分類問題に対して,能動学習が有効なアルゴリズムであることを示す。
関連論文リスト
- Active Learning via Classifier Impact and Greedy Selection for Interactive Image Retrieval [4.699825956909531]
Active Learning(AL)は,ラベル付けに最も重要な例を選択することで,アノテーションコストの削減を目的とした,ユーザインタラクションのアプローチである。
我々はGAL(Greedy Active Learning)と呼ばれる新しいバッチモードアクティブラーニングフレームワークを導入し、このアプリケーションに対処する。
論文 参考訳(メタデータ) (2024-12-03T09:27:46Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
低撮影能力のためのコントラスト学習、クラスタリング、マスク付き画像モデリングなど、さまざまな自己教師付きプレテキストタスクについて検討する。
マスク画像モデリングとクラスタリングの両方をプリテキストタスクとして含むフレームワークを導入する。
実規模データセット上でモデルをテストした場合,マルチクラス分類,マルチラベル分類,セマンティックセマンティックセグメンテーションにおける性能向上を示す。
論文 参考訳(メタデータ) (2024-06-25T10:56:03Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
本研究では,不確実性に基づくサンプリングと多様性に基づくサンプリングを統合したポストホック能動学習アルゴリズムを提案する。
提案アルゴリズムは単純で実装が容易なだけでなく,様々なデータセットに対して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T03:40:30Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
自己相似性駆動型スケール不変学習(SSL)という新しいワンステップフレームワークを提案する。
本稿では,ネットワークを前景と学習スケール不変の機能に集中させるための,マルチスケール・エクステンプラー・ブランチを提案する。
PRWおよびCUHK-SYSUデータベースの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-25T04:48:11Z) - MoBYv2AL: Self-supervised Active Learning for Image Classification [57.4372176671293]
画像分類のための自己教師型アクティブラーニングフレームワークであるMoBYv2ALを提案する。
私たちの貢献は、最も成功した自己教師付き学習アルゴリズムであるMoBYをALパイプラインに持ち上げることです。
近年のAL法と比較すると,最先端の結果が得られている。
論文 参考訳(メタデータ) (2023-01-04T10:52:02Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
ディープネットワークは、多数の画像でトレーニングすることで、カテゴリのオブジェクトを正確に認識することを学ぶことができる。
低ショット画像認識タスク(low-shot image recognition task)として知られるメタラーニングの課題は、1つのカテゴリの認識モデルを学ぶためにアノテーション付き画像しか利用できない場合に発生する。
この問題を解決するため,Cascaded Feature Matching Network (CFMN) と呼ばれる手法を提案する。
EmphminiImageNet と Omniglot の2つの標準データセットを用いた数ショット学習実験により,本手法の有効性が確認された。
論文 参考訳(メタデータ) (2021-01-13T11:37:28Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
画像分類性能を向上させるために,非ラベルインスタンスを用いたトランスダクティブなメタラーニング手法を開発した。
提案手法は,正規化ニューラルアダプティブ特徴抽出器を組み合わせることで,非ラベルデータを用いたテスト時間分類精度の向上を実現する。
論文 参考訳(メタデータ) (2020-06-17T05:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。