論文の概要: Cross-Domain Imitation Learning via Optimal Transport
- arxiv url: http://arxiv.org/abs/2110.03684v1
- Date: Thu, 7 Oct 2021 17:59:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 16:52:17.089809
- Title: Cross-Domain Imitation Learning via Optimal Transport
- Title(参考訳): 最適輸送によるクロスドメイン模倣学習
- Authors: Arnaud Fickinger, Samuel Cohen, Stuart Russell, Brandon Amos
- Abstract要約: クロスドメイン模倣学習は、あるエージェントの専門的なデモンストレーションを活用して、異なる実施形態や形態を持つ模倣エージェントを訓練する方法を研究する。
本稿では,Gromov-Wasserstein Imitation Learning (GWIL)を提案する。
- 参考スコア(独自算出の注目度): 12.221297423161502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-domain imitation learning studies how to leverage expert demonstrations
of one agent to train an imitation agent with a different embodiment or
morphology. Comparing trajectories and stationary distributions between the
expert and imitation agents is challenging because they live on different
systems that may not even have the same dimensionality. We propose
Gromov-Wasserstein Imitation Learning (GWIL), a method for cross-domain
imitation that uses the Gromov-Wasserstein distance to align and compare states
between the different spaces of the agents. Our theory formally characterizes
the scenarios where GWIL preserves optimality, revealing its possibilities and
limitations. We demonstrate the effectiveness of GWIL in non-trivial continuous
control domains ranging from simple rigid transformation of the expert domain
to arbitrary transformation of the state-action space.
- Abstract(参考訳): クロスドメイン模倣学習は、あるエージェントの専門的なデモンストレーションを活用して、異なる実施形態や形態を持つ模倣エージェントを訓練する方法を研究する。
専門家と模倣エージェントの軌道と静止分布を比較することは、同じ次元を持たないかもしれない異なるシステムで生活しているため困難である。
本稿ではgromov-wasserstein imitation learning (gwil)を提案する。gwilはgromov-wasserstein距離を用いてエージェントの異なる空間間の状態の調整と比較を行うクロスドメイン模倣の手法である。
我々の理論は、GWILが最適性を保ち、その可能性と限界を明らかにするシナリオを公式に特徴づけている。
専門家領域の単純剛性変換から状態-作用空間の任意の変換まで,非自明な連続制御領域におけるgwilの有効性を示す。
関連論文リスト
- xTED: Cross-Domain Adaptation via Diffusion-Based Trajectory Editing [21.37585797507323]
ドメイン間政策伝達手法は主に、ポリシー学習を容易にするために、ドメインの対応や修正を学習することを目的としている。
本稿では,クロスドメイントラジェクトリ適応のために特別に設計された拡散モデルを用いたクロスドメイントラジェクトリ・EDitingフレームワークを提案する。
提案するモデルアーキテクチャは,対象データ内の動的パターンだけでなく,状態,行動,報酬間の複雑な依存関係を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-09-13T10:07:28Z) - Cross-Domain Policy Transfer by Representation Alignment via Multi-Domain Behavioral Cloning [13.674493608667627]
本稿では、ドメイン間の共有潜在表現と、その上に共通の抽象ポリシーを学習する、ドメイン間ポリシー転送のためのシンプルなアプローチを提案する。
提案手法は,プロキシタスクの不整合軌道上でのマルチドメイン動作のクローン化と,ドメイン間のアライメントを促進するために,最大平均不整合(MMD)を正規化用語として利用する。
論文 参考訳(メタデータ) (2024-07-24T00:13:00Z) - Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation [59.41178047749177]
トレーニング中に見られるさまざまなドメインのデータを扱うことができ、トレーニング中に見つからないドメインに対して堅牢な効率的なモデルを開発することを目的として、マルチドメインニューラルネットワーク翻訳に重点を置いている。
SMOE(Sparse Mixture-of-Experts)モデルは、効率的なモデルスケーリングを可能にするため、このタスクに適していると仮定する。
マルチドメインシナリオにおけるSMoEの有用性を検証するための一連の実験を行い、Transformerの簡単な幅スケーリングは、実際はよりシンプルで驚くほど効率的なアプローチであり、SMoEと同等の性能レベルに達することを発見した。
論文 参考訳(メタデータ) (2024-07-01T09:45:22Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative Bird's Eye View Segmentation for Connected and Autonomous Driving [49.03947018718156]
協調的な知覚の訓練と推論の段階で利用される統合されたドメイン一般化フレームワークを提案する。
また、システム内ドメインアライメント機構を導入し、コネクテッドおよび自律走行車間のドメインの差を減らし、潜在的に排除する。
論文 参考訳(メタデータ) (2023-11-28T12:52:49Z) - Learning Representative Trajectories of Dynamical Systems via
Domain-Adaptive Imitation [0.0]
ドメイン適応軌道模倣のための深層強化学習エージェントDATIを提案する。
実験の結果,DATIは模擬学習と最適制御のベースライン手法よりも優れていることがわかった。
実世界のシナリオへの一般化は、海上交通における異常な動きパターンの発見を通じて示される。
論文 参考訳(メタデータ) (2023-04-19T15:53:48Z) - Learn what matters: cross-domain imitation learning with task-relevant
embeddings [77.34726150561087]
自律エージェントが、異なる環境や異なるエージェントなど、異なる領域のデモンストレーションからタスクを実行することを学習する方法について検討する。
我々は、追加のデモンストレーションやさらなるドメイン知識にアクセスすることなく、クロスドメインの模倣学習を可能にするスケーラブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-24T21:56:58Z) - Variational Transfer Learning using Cross-Domain Latent Modulation [1.9662978733004601]
本稿では,効率的な転送学習を実現するために,新しいドメイン間遅延変調機構を変分オートエンコーダフレームワークに導入する。
ソース領域とターゲット領域の深部表現は、まず統一推論モデルにより抽出され、勾配逆数を用いて整列される。
学習した深層表現は、一貫性の制約が適用される代替ドメインの潜在エンコーディングにクロスモデレートされる。
論文 参考訳(メタデータ) (2022-05-31T03:47:08Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
本稿では,トランジタブルグラフニューラルネットワーク(Transferable Graph Neural Network, T-GNN)フレームワークを提案する。
具体的には、ドメイン固有知識が減少する構造運動知識を探索するために、ドメイン不変GNNを提案する。
さらに,注目に基づく適応的知識学習モジュールを提案し,知識伝達のための詳細な個別レベルの特徴表現について検討した。
論文 参考訳(メタデータ) (2022-03-09T21:08:47Z) - Cross-domain Imitation from Observations [50.669343548588294]
模擬学習は、専門家の行動を利用して訓練エージェントに適切な報酬関数を設計することの難しさを回避しようとする。
本稿では,専門家とエージェントMDPの相違点が存在する場合に,タスクを模倣する方法の問題について検討する。
このようなドメイン間の対応を学習するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-20T21:08:25Z) - Off-Dynamics Reinforcement Learning: Training for Transfer with Domain
Classifiers [138.68213707587822]
強化学習におけるドメイン適応のためのシンプルで実践的で直感的なアプローチを提案する。
報酬関数を変更することで、力学の違いを補うことで、この目標を達成することができることを示す。
我々のアプローチは、連続状態とアクションを持つドメインに適用でき、ダイナミックスの明示的なモデルを学ぶ必要がない。
論文 参考訳(メタデータ) (2020-06-24T17:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。