論文の概要: Towards Full-scene Domain Generalization in Multi-agent Collaborative Bird's Eye View Segmentation for Connected and Autonomous Driving
- arxiv url: http://arxiv.org/abs/2311.16754v3
- Date: Sun, 24 Nov 2024 17:47:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:16:57.103887
- Title: Towards Full-scene Domain Generalization in Multi-agent Collaborative Bird's Eye View Segmentation for Connected and Autonomous Driving
- Title(参考訳): 連携・自律運転のための多エージェント協調型鳥眼ビューセグメンテーションのフルシーン領域一般化に向けて
- Authors: Senkang Hu, Zhengru Fang, Yiqin Deng, Xianhao Chen, Yuguang Fang, Sam Kwong,
- Abstract要約: 協調的な知覚の訓練と推論の段階で利用される統合されたドメイン一般化フレームワークを提案する。
また、システム内ドメインアライメント機構を導入し、コネクテッドおよび自律走行車間のドメインの差を減らし、潜在的に排除する。
- 参考スコア(独自算出の注目度): 49.03947018718156
- License:
- Abstract: Collaborative perception has recently gained significant attention in autonomous driving, improving perception quality by enabling the exchange of additional information among vehicles. However, deploying collaborative perception systems can lead to domain shifts due to diverse environmental conditions and data heterogeneity among connected and autonomous vehicles (CAVs). To address these challenges, we propose a unified domain generalization framework to be utilized during the training and inference stages of collaborative perception. In the training phase, we introduce an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn across multiple domains. We also employ a meta-consistency training scheme to simulate domain shifts, optimizing the model with a carefully designed consistency loss to acquire domain-invariant representations. In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy among CAVs prior to inference. Extensive experiments substantiate the effectiveness of our method in comparison with the existing state-of-the-art works.
- Abstract(参考訳): 協調的知覚は、最近、自動車間で追加情報交換を可能にすることにより、認識品質を向上させる自律運転において大きな注目を集めている。
しかし、協調認識システムの展開は、様々な環境条件とコネクテッドおよび自律走行車(CAV)間のデータの均一性によるドメインシフトにつながる可能性がある。
これらの課題に対処するために,協調的な知覚の訓練と推論の段階で活用される統一的なドメイン一般化フレームワークを提案する。
トレーニングフェーズでは、低周波画像の変動を増大させるAmpAug(Amplitude Augmentation)手法を導入し、複数の領域にわたる学習能力を拡大する。
また、メタ一貫性トレーニングスキームを用いてドメインシフトをシミュレートし、慎重に設計された一貫性損失でモデルを最適化し、ドメイン不変表現を取得する。
推論フェーズでは,システム内ドメインアライメント機構を導入し,推論に先立ってCAV間のドメイン不一致を低減または除去する。
大規模実験により,既存の最先端技術と比較し,本手法の有効性を実証した。
関連論文リスト
- Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation [59.41178047749177]
トレーニング中に見られるさまざまなドメインのデータを扱うことができ、トレーニング中に見つからないドメインに対して堅牢な効率的なモデルを開発することを目的として、マルチドメインニューラルネットワーク翻訳に重点を置いている。
SMOE(Sparse Mixture-of-Experts)モデルは、効率的なモデルスケーリングを可能にするため、このタスクに適していると仮定する。
マルチドメインシナリオにおけるSMoEの有用性を検証するための一連の実験を行い、Transformerの簡単な幅スケーリングは、実際はよりシンプルで驚くほど効率的なアプローチであり、SMoEと同等の性能レベルに達することを発見した。
論文 参考訳(メタデータ) (2024-07-01T09:45:22Z) - AD-Aligning: Emulating Human-like Generalization for Cognitive Domain Adaptation in Deep Learning [3.3543468626874486]
ドメイン適応は、ディープラーニングモデルがさまざまなドメインにまたがる一般化を可能にするために重要である。
AD-Aligning(AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning)を導入。
以上の結果から,AD-Aligningは人間の知覚に固有のニュアンス認知過程をエミュレートする能力を示した。
論文 参考訳(メタデータ) (2024-05-15T02:34:06Z) - Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
マルチタスク学習を用いた2相表現学習手法を提案する。
我々は、先行空間と潜時空間の間の相互情報の最小化により、潜時空間を解き放つ。
モデルの有効性を複数のサイバーセキュリティデータセットで評価する。
論文 参考訳(メタデータ) (2023-12-28T17:24:13Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS)は、ラベル付きソースドメインからラベル付きターゲットドメインに監督を移すことを目的としている。
本稿では,特徴量と特徴量との相違に対処するQuad-directional Mixup(QuadMix)法を提案する。
提案手法は,4つの挑戦的UDA-SSベンチマークにおいて,最先端の成果を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2023-11-22T09:18:49Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
異常セグメンテーションは、画像中の非定型物体を識別する上で重要な役割を担っている。
既存の手法は合成データに顕著な結果を示すが、合成データドメインと実世界のデータドメインの相違を考慮できないことが多い。
シーンと個々のサンプルレベルの両方で、ドメイン間の機能を調和させるのに適した、マルチグラニュラリティ・クロスドメインアライメントフレームワークを導入します。
論文 参考訳(メタデータ) (2023-08-16T22:54:49Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Towards Adaptive Semantic Segmentation by Progressive Feature Refinement [16.40758125170239]
セグメンテーションネットワークの転送可能性を高めるために,ドメイン逆学習とともに,革新的なプログレッシブな特徴改善フレームワークを提案する。
その結果、ソース・ドメイン・イメージで訓練されたセグメンテーション・モデルは、大幅な性能劣化を伴わずにターゲット・ドメインに転送できる。
論文 参考訳(メタデータ) (2020-09-30T04:17:48Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。