Variational determination of multi-qubit geometrical entanglement in
NISQ computers
- URL: http://arxiv.org/abs/2110.03709v2
- Date: Thu, 28 Apr 2022 12:00:30 GMT
- Title: Variational determination of multi-qubit geometrical entanglement in
NISQ computers
- Authors: A. D. Mu\~noz-Moller, L. Pereira, L. Zambrano, J. Cort\'es-Vega, and
A. Delgado
- Abstract summary: Current noise levels in physical realizations of qubits and quantum operations limit the applicability of conventional methods to characterize entanglement.
We follow a quantum variational approach to estimate the geometric measure of entanglement of multiqubit pure states.
The algorithm requires only single-qubit gates and measurements, so it is well suited for NISQ devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current noise levels in physical realizations of qubits and quantum
operations limit the applicability of conventional methods to characterize
entanglement. In this adverse scenario, we follow a quantum variational
approach to estimate the geometric measure of entanglement of multiqubit pure
states. The algorithm requires only single-qubit gates and measurements, so it
is well suited for NISQ devices. This is demonstrated by successfully
implementing the method on IBM Quantum devices for Greenberger-Horne-Zeilinger
states of $3$, $4$, and $5$ qubits. Numerical simulations with random states
show the robustness and accuracy of the method. The scalability of the protocol
is numerically demonstrated via matrix product states techniques up to $25$
qubits.
Related papers
- Variational preparation of entangled states in a system of transmon qubits [29.259008600842517]
We use a minimally calibrated two-qubit i-Swap-like gate to prepare Bell states and GHZ states experimentally in systems of two and three transmon qubits.
Our proposed methodology employs variational quantum algorithms (VQAs) to create the target quantum state through imperfect multiqubit operations.
arXiv Detail & Related papers (2025-04-02T14:09:26Z) - A Permutation-equivariant Deep Learning Model for Quantum State Characterization [1.9010580518869415]
characterization of quantum states is a fundamental step of any application of quantum technologies.
We show how to combine a permutation-equivariant deep learning model with the tQST protocol.
arXiv Detail & Related papers (2025-02-21T08:56:53Z) - Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - Optimal quantum state tomography with local informationally complete measurements [25.33379738135298]
We study whether a general MPS/MPDO state can be recovered with bounded errors using only a number of state copies in the number of qubits.
We provide a positive answer for a variety of common many-body quantum states, including typical short-range entangled states, random MPS/MPDO states, and thermal states of one-dimensional Hamiltonians.
arXiv Detail & Related papers (2024-08-13T17:58:02Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Simulating electronic structure on bosonic quantum computers [34.84696943963362]
We propose an approach to map the electronic Hamiltonian into a qumode bosonic problem that can be solved on bosonic quantum devices.
This work establishes a new pathway for simulating many-fermion systems, highlighting the potential of hybrid qubit-qumode quantum devices.
arXiv Detail & Related papers (2024-04-16T02:04:11Z) - Certifying almost all quantum states with few single-qubit measurements [0.9558392439655012]
We show that almost all n-qubit target states can be certified from only O(n2) single-qubit measurements.
We show that such verified representations can be used to efficiently predict highly non-local properties.
arXiv Detail & Related papers (2024-04-10T18:21:11Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - An entanglement-aware quantum computer simulation algorithm [0.0]
I propose a method for inferring the fidelity of an approximate quantum state without direct comparison to its exact counterpart.
I show that this algorithm far surpasses standard fixed bond dimension truncation schemes.
arXiv Detail & Related papers (2023-07-31T17:27:04Z) - Preparation of Entangled Many-Body States with Machine Learning [0.06768558752130309]
Preparation of a target quantum many-body state on quantum simulators is one of the significant steps in quantum science and technology.
With a small number of qubits, a few quantum states, such as the Greenberger-Horne-Zeilinger state, have been prepared, but fundamental difficulties in systems with many qubits remain.
Here, we provide one algorithm with an implementation of a deep learning process and achieve to prepare the target ground states with many qubits.
arXiv Detail & Related papers (2023-07-27T05:03:57Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Quantum error mitigation via matrix product operators [27.426057220671336]
Quantum error mitigation (QEM) can suppress errors in measurement results via repeated experiments and post decomposition of data.
MPO representation increases the accuracy of modeling noise without consuming more experimental resources.
Our method is hopeful of being applied to circuits in higher dimensions with more qubits and deeper depth.
arXiv Detail & Related papers (2022-01-03T16:57:43Z) - A hybrid quantum-classical approach to mitigating measurement errors [3.8073142980733]
We present a scheme to deal with unknown quantum noise and show that it can be used to mitigate errors in measurement readout with NISQ devices.
The scheme is implemented in quantum algorithms with NISQ devices.
arXiv Detail & Related papers (2020-03-27T10:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.