Entropy-driven entanglement forging
- URL: http://arxiv.org/abs/2409.04510v2
- Date: Fri, 11 Oct 2024 13:32:18 GMT
- Title: Entropy-driven entanglement forging
- Authors: Axel Pérez-Obiol, Sergi Masot-Llima, Antonio M. Romero, Javier Menéndez, Arnau Rios, Artur García-Sáez, Bruno Juliá-Díaz,
- Abstract summary: We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating physical systems with variational quantum algorithms is a well-studied approach, but it is challenging to implement in current devices due to demands in qubit number and circuit depth. We show how limited knowledge of the system, namely the entropy of its subsystems, its entanglement structure or certain symmetries, can be used to reduce the cost of these algorithms with entanglement forging. To do so, we simulate a Fermi-Hubbard one-dimensional chain with a parametrized hopping term, as well as atomic nuclei ${}^{28}$Ne and ${}^{60}$Ti with the nuclear shell model. Using an adaptive variational quantum eigensolver we find significant reductions in both the maximum number of qubits (up to one fourth) and the amount of two-qubit gates (over an order of magnitude) required in the quantum circuits. Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Related papers
- Estimating quantum amplitudes can be exponentially improved [11.282486674587236]
Estimating quantum amplitudes is a fundamental task in quantum computing.
We present a novel framework for estimating quantum amplitudes by transforming pure states into their matrix forms.
Our framework achieves the standard quantum limit $epsilon-2$ and the Heisenberg limit $epsilon-1$, respectively.
arXiv Detail & Related papers (2024-08-25T04:35:53Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Benchmarking digital quantum simulations above hundreds of qubits using quantum critical dynamics [42.29248343585333]
We benchmark quantum hardware and error mitigation techniques on up to 133 qubits.
We show reliable control up to a two-qubit gate depth of 28, featuring a maximum of 1396 two-qubit gates.
Results are transferable to applications such as Hamiltonian simulation, variational algorithms, optimization, or quantum machine learning.
arXiv Detail & Related papers (2024-04-11T18:00:05Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Simulating quantum circuits using the multi-scale entanglement
renormalization ansatz [0.0]
We propose a scalable technique for approximate simulations of intermediate-size quantum circuits.
We benchmark the proposed technique for checkerboard-type intermediate-size quantum circuits of 27 qubits with various depths.
arXiv Detail & Related papers (2021-12-28T09:05:01Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Configurable sublinear circuits for quantum state preparation [1.9279780052245203]
We show a configuration that encodes an $N$-dimensional state by a quantum circuit with $O(sqrtN)$ width and depth and entangled information in ancillary qubits.
We show a proof-of-principle on five quantum computers and compare the results.
arXiv Detail & Related papers (2021-08-23T13:52:43Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.