論文の概要: UoB at SemEval-2021 Task 5: Extending Pre-Trained Language Models to
Include Task and Domain-Specific Information for Toxic Span Prediction
- arxiv url: http://arxiv.org/abs/2110.03730v1
- Date: Thu, 7 Oct 2021 18:29:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-12 08:41:37.289549
- Title: UoB at SemEval-2021 Task 5: Extending Pre-Trained Language Models to
Include Task and Domain-Specific Information for Toxic Span Prediction
- Title(参考訳): UoB at SemEval-2021 Task 5: Toxic Span Predictionのためのタスクとドメイン特化情報を含む事前学習言語モデルの拡張
- Authors: Erik Yan and Harish Tayyar Madabushi
- Abstract要約: Toxicityはソーシャルメディアで広く普及しており、オンラインコミュニティの健康に大きな脅威をもたらしている。
近年,多くのNLPタスクにおいて最先端の成果を達成している事前学習型言語モデルの導入により,自然言語処理へのアプローチ方法が変化している。
- 参考スコア(独自算出の注目度): 0.8376091455761259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Toxicity is pervasive in social media and poses a major threat to the health
of online communities. The recent introduction of pre-trained language models,
which have achieved state-of-the-art results in many NLP tasks, has transformed
the way in which we approach natural language processing. However, the inherent
nature of pre-training means that they are unlikely to capture task-specific
statistical information or learn domain-specific knowledge. Additionally, most
implementations of these models typically do not employ conditional random
fields, a method for simultaneous token classification. We show that these
modifications can improve model performance on the Toxic Spans Detection task
at SemEval-2021 to achieve a score within 4 percentage points of the top
performing team.
- Abstract(参考訳): Toxicityはソーシャルメディアで広く普及しており、オンラインコミュニティの健康に大きな脅威をもたらす。
近年,多くのNLPタスクにおいて最先端の成果を得た事前学習型言語モデルの導入により,自然言語処理へのアプローチ方法が変化した。
しかし、事前学習の本質は、タスク固有の統計情報を捉えたり、ドメイン固有の知識を学ぶことは不可能であることを意味する。
さらに、これらのモデルのほとんどの実装は、通常、同時トークン分類の方法である条件付きランダムフィールドを使用しない。
これらの修正により,semeval-2021における有毒スパン検出タスクにおけるモデル性能が向上し,上位チームの4ポイント以内のスコアを得ることができた。
関連論文リスト
- Ensembling Finetuned Language Models for Text Classification [55.15643209328513]
ファインタニング(英: Finetuning)は、特定のタスクに事前訓練されたモデルを適用するために、様々なコミュニティで一般的なプラクティスである。
ニューラルネットワークのアンサンブルは、通常、パフォーマンスを高め、信頼性の高い不確実性推定を提供するために使用される。
6つのデータセット上の5つの大きめのモデルから予測されたメタデータセットを提示し、異なるアンサンブル戦略の結果を報告する。
論文 参考訳(メタデータ) (2024-10-25T09:15:54Z) - Self-supervised Adaptive Pre-training of Multilingual Speech Models for
Language and Dialect Identification [19.893213508284813]
目標領域や下流タスクの言語に事前学習モデルを適用するために,自己教師付き適応型事前学習を提案する。
SPTはFLEURSベンチマークのXLSR性能を向上し、表現不足言語では40.1%まで向上することを示した。
論文 参考訳(メタデータ) (2023-12-12T14:58:08Z) - Adding Instructions during Pretraining: Effective Way of Controlling
Toxicity in Language Models [29.505176809305095]
本稿では,その実用性を損なうことなく,モデル毒性を大幅に低減する2つの新しい事前学習データ拡張戦略を提案する。
この2つの戦略は,(1)MEDA:メタデータとして生毒性スコアを付加し,(2)INST:それらの毒性を示すサンプルに指示を加えることである。
以上の結果から,最も優れた性能戦略(INST)は,5つのベンチマークNLPタスクの精度を維持しつつ,毒性の確率を61%まで大幅に低下させることが示唆された。
論文 参考訳(メタデータ) (2023-02-14T23:00:42Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - UPB at SemEval-2021 Task 5: Virtual Adversarial Training for Toxic Spans
Detection [0.7197592390105455]
Semeval-2021, Task 5 - Toxic Spans DetectionはJigsaw Unintended Biasデータセットのサブセットの新たなアノテーションに基づいている。
このタスクでは、参加者はメッセージに有害な短いコメントで文字スパンを自動的に検出しなければならなかった。
本モデルは,トランスフォーマーベースモデルの微調整過程において,半教師付き環境で仮想適応トレーニングを適用することを検討する。
論文 参考訳(メタデータ) (2021-04-17T19:42:12Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
訓練済みの言語モデルから下流の言語間タスクへの微調整は、有望な結果を示している。
ダウンストリームタスクに微調整する場合、継続学習を活用して、事前学習したモデルの言語間能力を維持する。
提案手法は、ゼロショット言語間タグ付けや名前付きエンティティ認識タスクにおいて、他の微調整ベースラインよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-04-29T14:07:18Z) - Don't Stop Pretraining: Adapt Language Models to Domains and Tasks [81.99843216550306]
バイオメディカルおよびコンピュータサイエンスの出版物、ニュース、レビュー)と8つの分類タスクについて調査する。
ドメイン内の事前トレーニング(ドメイン適応型事前トレーニング)の第2フェーズでは、パフォーマンスが向上する。
タスクの未ラベルデータ(タスク適応事前トレーニング)に適応することで、ドメイン適応事前トレーニング後のパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-04-23T04:21:19Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z) - CALM: Continuous Adaptive Learning for Language Modeling [18.72860206714457]
自然言語処理コミュニティでは,大規模言語表現モデルのトレーニングが標準となっている。
これらの事前学習モデルが破滅的忘れという形で性能劣化を示すことを示す。
言語モデリングのための継続的適応学習CALM:複数のドメインにまたがる知識を保持するモデルをレンダリングする手法を提案する。
論文 参考訳(メタデータ) (2020-04-08T03:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。