論文の概要: Ensembling Finetuned Language Models for Text Classification
- arxiv url: http://arxiv.org/abs/2410.19889v1
- Date: Fri, 25 Oct 2024 09:15:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:17:38.227180
- Title: Ensembling Finetuned Language Models for Text Classification
- Title(参考訳): テキスト分類のための微調整言語モデルの構築
- Authors: Sebastian Pineda Arango, Maciej Janowski, Lennart Purucker, Arber Zela, Frank Hutter, Josif Grabocka,
- Abstract要約: ファインタニング(英: Finetuning)は、特定のタスクに事前訓練されたモデルを適用するために、様々なコミュニティで一般的なプラクティスである。
ニューラルネットワークのアンサンブルは、通常、パフォーマンスを高め、信頼性の高い不確実性推定を提供するために使用される。
6つのデータセット上の5つの大きめのモデルから予測されたメタデータセットを提示し、異なるアンサンブル戦略の結果を報告する。
- 参考スコア(独自算出の注目度): 55.15643209328513
- License:
- Abstract: Finetuning is a common practice widespread across different communities to adapt pretrained models to particular tasks. Text classification is one of these tasks for which many pretrained models are available. On the other hand, ensembles of neural networks are typically used to boost performance and provide reliable uncertainty estimates. However, ensembling pretrained models for text classification is not a well-studied avenue. In this paper, we present a metadataset with predictions from five large finetuned models on six datasets, and report results of different ensembling strategies from these predictions. Our results shed light on how ensembling can improve the performance of finetuned text classifiers and incentivize future adoption of ensembles in such tasks.
- Abstract(参考訳): ファインタニング(英: Finetuning)は、特定のタスクに事前訓練されたモデルを適用するために、様々なコミュニティにまたがる一般的な実践である。
テキスト分類は、多くの事前訓練されたモデルが利用できるこれらのタスクの1つである。
一方、ニューラルネットワークのアンサンブルは、通常、性能を高め、信頼性の高い不確実性推定を提供するために使用される。
しかし、テキスト分類のための事前学習されたモデルをアンサンブルすることは、十分に研究された道ではない。
本稿では,6つのデータセット上の5つの大きめの微調整モデルから予測されたメタデータを提示し,これらの予測から異なるアンサンブル戦略の結果を報告する。
この結果から,微調整テキスト分類器の性能向上と,このようなタスクにおけるアンサンブルの今後の導入へのインセンティブが示唆された。
関連論文リスト
- Manual Verbalizer Enrichment for Few-Shot Text Classification [1.860409237919611]
acrshortmaveは、クラスラベルの豊か化による動詞化のためのアプローチである。
本モデルでは, 資源を著しく減らしながら, 最先端の成果が得られている。
論文 参考訳(メタデータ) (2024-10-08T16:16:47Z) - Unsupervised Calibration through Prior Adaptation for Text
Classification using Large Language Models [37.39843935632105]
ラベル付きサンプルを必要とせずにテキスト分類タスクを実行するために,先行クラス分布に適応する手法を提案する。
その結果,これらの手法は,プロンプト内の訓練ショット数が異なる場合,適応しないモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-07-13T12:11:36Z) - Zero-Shot Text Classification via Self-Supervised Tuning [46.9902502503747]
ゼロショットテキスト分類タスクを解決するための自己教師付き学習に基づく新しいパラダイムを提案する。
自己教師付きチューニングという,ラベルのないデータで言語モデルをチューニングする。
我々のモデルは10タスク中7タスクで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-19T05:47:33Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
サブワードベースのモデルは、多くの設定において依然として最も実用的な選択肢であることを示している。
我々は,新しいモデルを設計し,評価する際のこれらの要因を検討するために,トークンフリーな手法の今後の取り組みを奨励する。
論文 参考訳(メタデータ) (2022-10-13T15:47:09Z) - Few-shot Text Classification with Dual Contrastive Consistency [31.141350717029358]
本稿では,事前学習した言語モデルを用いて,数ショットのテキスト分類を行う方法について検討する。
ラベル付きデータが少ない場合の教師付きコントラスト学習と、ラベルなしデータの一貫性と規則化を採用する。
論文 参考訳(メタデータ) (2022-09-29T19:26:23Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
実例が少ない事前学習言語モデルはラベル間に強い予測バイアスを示すことを示す。
わずかな微調整で予測バイアスを軽減できるが,本分析では,非タスク関連の特徴を捉えることで,モデルの性能向上を図っている。
これらの観察は、より少ない例でモデルのパフォーマンスを追求することは、病理学的予測行動を引き起こす可能性があることを警告する。
論文 参考訳(メタデータ) (2022-04-17T15:55:18Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
モデルの一般化と精度に及ぼす3つの異なる適応法の影響を計測する。
2つのモデルを用いた実験では、微調整はタスクの内容と構造の両方を学習することで最もうまく機能するが、過度に適合し、新しい答えへの限定的な一般化に苦しむ。
我々は、プレフィックスチューニングのような代替適応手法が同等の精度を持つのを観察するが、解を見落とさずに一般化し、対数分割に対してより堅牢である。
論文 参考訳(メタデータ) (2021-09-07T03:13:06Z) - Turning Tables: Generating Examples from Semi-structured Tables for
Endowing Language Models with Reasoning Skills [32.55545292360155]
本稿では,半構造化テーブルを活用し,大規模質問とパラグラフのペアを自動的に生成する手法を提案する。
16種類の推論スキルを必要とする例を含む、この合成データに対する事前学習のステップを追加します。
我々のモデルであるPReasMは、トレーニング済みエンコーダ-デコーダモデルであるT5を大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-07-15T11:37:14Z) - Few-shot learning through contextual data augmentation [74.20290390065475]
機械翻訳モデルは、時間とともに性能を維持するために新しいデータに適応する必要がある。
一つの例から5つの例への適応が可能であることを示す。
本モデルでは,平均313個の並列例でトレーニングした基準システムよりも精度がよいことを示す。
論文 参考訳(メタデータ) (2021-03-31T09:05:43Z) - Selecting Informative Contexts Improves Language Model Finetuning [66.26521454263343]
本稿では,情報ゲインフィルタと呼ぶ汎用的な微調整手法を提案する。
微調整中、二次学習者は情報的例を選択し、非情報的例をスキップする。
提案手法は,データセット,微調整タスク,言語モデルアーキテクチャ間で一貫した改善がなされていることを示す。
論文 参考訳(メタデータ) (2020-05-01T02:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。