CCGG: A Deep Autoregressive Model for Class-Conditional Graph Generation
- URL: http://arxiv.org/abs/2110.03800v1
- Date: Thu, 7 Oct 2021 21:24:07 GMT
- Title: CCGG: A Deep Autoregressive Model for Class-Conditional Graph Generation
- Authors: Matin Yousefabadi, Yassaman Ommi, Faezeh Faez, Amirmojtaba Sabour,
Mahdieh Soleymani Baghshah, Hamid R. Rabiee
- Abstract summary: We introduce the Class Conditioned Graph Generator (CCGG) to generate graphs with desired features.
CCGG outperforms existing conditional graph generation methods on various datasets.
It also manages to maintain the quality of the generated graphs in terms of distribution-based evaluation metrics.
- Score: 7.37333913697359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph data structures are fundamental for studying connected entities. With
an increase in the number of applications where data is represented as graphs,
the problem of graph generation has recently become a hot topic in many signal
processing areas. However, despite its significance, conditional graph
generation that creates graphs with desired features is relatively less
explored in previous studies. This paper addresses the problem of
class-conditional graph generation that uses class labels as generation
constraints by introducing the Class Conditioned Graph Generator (CCGG). We
built CCGG by adding the class information as an additional input to a graph
generator model and including a classification loss in its total loss along
with a gradient passing trick. Our experiments show that CCGG outperforms
existing conditional graph generation methods on various datasets. It also
manages to maintain the quality of the generated graphs in terms of
distribution-based evaluation metrics.
Related papers
- Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs [0.24999074238880487]
This study explores using generated graphs for data augmentation.
It compares the performance of combining generated graphs with real graphs, and examining the effect of different quantities of generated graphs on graph classification tasks.
Our results introduce a new approach to graph data augmentation, ensuring consistent labels and enhancing classification performance.
arXiv Detail & Related papers (2024-07-20T06:05:26Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - GraphGen-Redux: a Fast and Lightweight Recurrent Model for labeled Graph
Generation [13.956691231452336]
We present a novel graph preprocessing approach for labeled graph generation.
By introducing a novel graph preprocessing approach, we are able to process the labeling information of both nodes and edges jointly.
The corresponding model, which we term GraphGen-Redux, improves upon the generative performances of GraphGen in a wide range of datasets.
arXiv Detail & Related papers (2021-07-18T09:26:10Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z) - Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing [22.16111584447466]
Graph-based machine learning models are vulnerable to adversarial perturbations due to the non i.i.d nature of graph data.
We build a smoothed graph classification model with certified robustness guarantee.
We also evaluate the effectiveness of our approach under graph convolutional network (GCN) based multi-class graph classification model.
arXiv Detail & Related papers (2020-09-12T22:18:54Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding.
In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed.
Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, and graph visualization tasks.
arXiv Detail & Related papers (2020-03-10T02:33:14Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.