Hankel-structured Tensor Robust PCA for Multivariate Traffic Time Series
Anomaly Detection
- URL: http://arxiv.org/abs/2110.04352v1
- Date: Fri, 8 Oct 2021 19:35:39 GMT
- Title: Hankel-structured Tensor Robust PCA for Multivariate Traffic Time Series
Anomaly Detection
- Authors: Xudong Wang, Luis Miranda-Moreno, Lijun Sun
- Abstract summary: This study proposes a Hankel-structured tensor version of RPCA for anomaly detection in spatial data.
We decompose the corrupted matrix into a low-rank Hankel tensor and a sparse matrix.
We evaluate the method by synthetic data and passenger flow time series.
- Score: 9.067182100565695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatiotemporal traffic data (e.g., link speed/flow) collected from sensor
networks can be organized as multivariate time series with additional spatial
attributes. A crucial task in analyzing such data is to identify and detect
anomalous observations and events from the data with complex spatial and
temporal dependencies. Robust Principal Component Analysis (RPCA) is a widely
used tool for anomaly detection. However, the traditional RPCA purely relies on
the global low-rank assumption while ignoring the local temporal correlations.
In light of this, this study proposes a Hankel-structured tensor version of
RPCA for anomaly detection in spatiotemporal data. We treat the raw data with
anomalies as a multivariate time series matrix (location $\times$ time) and
assume the denoised matrix has a low-rank structure. Then we transform the
low-rank matrix to a third-order tensor by applying temporal Hankelization. In
the end, we decompose the corrupted matrix into a low-rank Hankel tensor and a
sparse matrix. With the Hankelization operation, the model can simultaneously
capture the global and local spatiotemporal correlations and exhibit more
robust performance. We formulate the problem as an optimization problem and use
tensor nuclear norm (TNN) to approximate the tensor rank and $l_1$ norm to
approximate the sparsity. We develop an efficient solution algorithm based on
the Alternating Direction Method of Multipliers (ADMM). Despite having three
hyper-parameters, the model is easy to set in practice. We evaluate the
proposed method by synthetic data and metro passenger flow time series and the
results demonstrate the accuracy of anomaly detection.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly
Detection using Data Degradation Scheme [0.7216399430290167]
Anomaly detection task for time series, especially for unlabeled data, has been a challenging problem.
We address it by applying a suitable data degradation scheme to self-supervised model training.
Inspired by the self-attention mechanism, we design a Transformer-based architecture to recognize the temporal context.
arXiv Detail & Related papers (2023-05-08T05:42:24Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
We have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN.
It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor.
arXiv Detail & Related papers (2022-10-05T04:32:12Z) - Nonparametric Factor Trajectory Learning for Dynamic Tensor
Decomposition [20.55025648415664]
We propose NON FActor Trajectory learning for dynamic tensor decomposition (NONFAT)
We use a second-level GP to sample the entry values and to capture the temporal relationship between the entities.
We have shown the advantage of our method in several real-world applications.
arXiv Detail & Related papers (2022-07-06T05:33:00Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-05-21T00:08:06Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.