Low-Rank Hankel Tensor Completion for Traffic Speed Estimation
- URL: http://arxiv.org/abs/2105.11335v1
- Date: Fri, 21 May 2021 00:08:06 GMT
- Title: Low-Rank Hankel Tensor Completion for Traffic Speed Estimation
- Authors: Xudong Wang, Yuankai Wu, Dingyi Zhuang, Lijun Sun
- Abstract summary: We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
- Score: 7.346671461427793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the traffic state estimation (TSE) problem using sparse
observations from mobile sensors. TSE can be considered a spatiotemporal
interpolation problem in which the evolution of traffic variables (e.g.,
speed/density) is governed by traffic flow dynamics (e.g., partial differential
equations). Most existing TSE methods either rely on well-defined physical
traffic flow models or require large amounts of simulation data as input to
train machine learning models. Different from previous studies, in this paper
we propose a purely data-driven and model-free solution. We consider TSE as a
spatiotemporal matrix completion/interpolation problem, and apply
spatiotemporal Hankel delay embedding to transforms the original incomplete
matrix to a fourth-order tensor. By imposing a low-rank assumption on this
tensor structure, we can approximate and characterize both global patterns and
the unknown and complex local spatiotemporal dynamics in a data-driven manner.
We use the truncated nuclear norm of the spatiotemporal unfolding (i.e., square
norm) to approximate the tensor rank and develop an efficient solution
algorithm based on the Alternating Direction Method of Multipliers (ADMM). The
proposed framework only involves two hyperparameters -- spatial and temporal
window lengths, which are easy to set given the degree of data sparsity. We
conduct numerical experiments on both synthetic simulation data and real-world
high-resolution trajectory data, and our results demonstrate the effectiveness
and superiority of the proposed model in some challenging scenarios.
Related papers
- Efficient and Robust Freeway Traffic Speed Estimation under Oblique Grid using Vehicle Trajectory Data [19.01488741469791]
We propose an efficient and robust low-rank model for precise oblique traffic speed state estimation.
The proposed method achieves up to 12% improvement in Root Mean Square Error (RMSE) in the TSE scenarios.
It runs more than 20 times faster than the state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-11-06T15:13:40Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
We use a data-driven approach to model a three-dimensional turbulent flow using cutting-edge Deep Learning techniques.
The accuracy of the model is assessed using statistical and physics-based metrics.
arXiv Detail & Related papers (2021-12-07T03:33:39Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
We propose a kinematic wave based Deep Convolutional Neural Network (Deep CNN) to estimate high resolution traffic speed dynamics from sparse probe vehicle trajectories.
We introduce two key approaches that allow us to incorporate kinematic wave theory principles to improve the robustness of existing learning-based estimation methods.
arXiv Detail & Related papers (2021-02-04T21:51:25Z) - A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation [13.48205738743634]
Missing data imputation is common in intemporal traffic data collected from various sensing systems.
We present an efficient algorithm to obtain the optimal solution for each variable.
The proposed model also outperforms other baseline models in extreme missing scenarios.
arXiv Detail & Related papers (2020-03-23T13:27:01Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.