論文の概要: Measure Twice, Cut Once: Quantifying Bias and Fairness in Deep Neural
Networks
- arxiv url: http://arxiv.org/abs/2110.04397v1
- Date: Fri, 8 Oct 2021 22:35:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-17 06:55:57.307163
- Title: Measure Twice, Cut Once: Quantifying Bias and Fairness in Deep Neural
Networks
- Title(参考訳): 2回測定し、1回カットする:ディープニューラルネットワークにおけるバイアスと公平性の定量化
- Authors: Cody Blakeney, Gentry Atkinson, Nathaniel Huish, Yan Yan, Vangelis
Metris, Ziliang Zong
- Abstract要約: 本稿では,2つのモデルのクラスワイドバイアスを定量的に評価する2つの指標を提案する。
これらの新しいメトリクスのパフォーマンスを評価し、その実践的応用を実証することにより、公平性だけでなくバイアスも測定できることを示す。
- 参考スコア(独自算出の注目度): 7.763173131630868
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Algorithmic bias is of increasing concern, both to the research community,
and society at large. Bias in AI is more abstract and unintuitive than
traditional forms of discrimination and can be more difficult to detect and
mitigate. A clear gap exists in the current literature on evaluating the
relative bias in the performance of multi-class classifiers. In this work, we
propose two simple yet effective metrics, Combined Error Variance (CEV) and
Symmetric Distance Error (SDE), to quantitatively evaluate the class-wise bias
of two models in comparison to one another. By evaluating the performance of
these new metrics and by demonstrating their practical application, we show
that they can be used to measure fairness as well as bias. These demonstrations
show that our metrics can address specific needs for measuring bias in
multi-class classification.
- Abstract(参考訳): アルゴリズムバイアスは、研究コミュニティと社会全体の両方に懸念が増している。
AIのバイアスは、従来の差別形式よりも抽象的で直感的であり、検出と緩和が困難である。
マルチクラス分類器の性能における相対バイアスの評価に関する現在の文献には明確なギャップがある。
本研究では,2つのモデルのクラス間バイアスを定量的に評価するために,誤差分散(cev)と対称距離誤差(sde)を組み合わせた簡易かつ効果的な2つの指標を提案する。
これらの新しいメトリクスのパフォーマンスを評価し、その実践的応用を実証することにより、公平性だけでなくバイアスも測定できることを示す。
これらの実演は,マルチクラス分類におけるバイアス測定のための特定のニーズに対応することができることを示す。
関連論文リスト
- Comprehensive Equity Index (CEI): Definition and Application to Bias Evaluation in Biometrics [47.762333925222926]
本稿では,機械学習モデルのバイアス行動の定量化のための新しい指標を提案する。
顔認識システムの運用評価に焦点をあて,適用する。
論文 参考訳(メタデータ) (2024-09-03T14:19:38Z) - Does Machine Bring in Extra Bias in Learning? Approximating Fairness in Models Promptly [2.002741592555996]
機械学習モデルの識別レベルを評価するための既存の技術には、一般的に使用されるグループと個別の公正度尺度が含まれる。
本稿では,集合間の距離に基づく「HFM(Harmonic Fairness measure)」を提案する。
実験結果から,提案した公正度尺度 HFM が有効であり,提案した ApproxDist が有効かつ効率的であることが示唆された。
論文 参考訳(メタデータ) (2024-05-15T11:07:40Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Ensembling over Classifiers: a Bias-Variance Perspective [13.006468721874372]
Pfau (2013) による偏差分解の拡張の上に構築し, 分類器のアンサンブルの挙動に関する重要な知見を得る。
条件付き推定は必然的に既約誤差を生じさせることを示す。
経験的に、標準的なアンサンブルはバイアスを減少させ、この予期せぬ減少のために、分類器のアンサンブルがうまく機能するかもしれないという仮説を立てる。
論文 参考訳(メタデータ) (2022-06-21T17:46:35Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Information-Theoretic Bias Assessment Of Learned Representations Of
Pretrained Face Recognition [18.07966649678408]
保護された人口統計属性に対するバイアスの度合いを特定するために,情報理論,独立バイアス評価指標を提案する。
我々の測定基準は、分類精度に依存する他の方法と異なり、浅いネットワークを用いて予測される保護属性の予測ラベルと地上の真実の差を調べる。
論文 参考訳(メタデータ) (2021-11-08T17:41:17Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
つぶやきの感情と職業分類のロングテール学習手法を評価する。
フェアネスを強制する手法により、マージンロスに基づくアプローチを拡張します。
論文 参考訳(メタデータ) (2021-09-21T22:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。