論文の概要: Does Machine Bring in Extra Bias in Learning? Approximating Fairness in Models Promptly
- arxiv url: http://arxiv.org/abs/2405.09251v1
- Date: Wed, 15 May 2024 11:07:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:46:20.079043
- Title: Does Machine Bring in Extra Bias in Learning? Approximating Fairness in Models Promptly
- Title(参考訳): 機械は学習に余分なバイアスをもたらすか?モデルの公平性を迅速に近似する
- Authors: Yijun Bian, Yujie Luo,
- Abstract要約: 機械学習モデルの識別レベルを評価するための既存の技術には、一般的に使用されるグループと個別の公正度尺度が含まれる。
本稿では,集合間の距離に基づく「HFM(Harmonic Fairness measure)」を提案する。
実験結果から,提案した公正度尺度 HFM が有効であり,提案した ApproxDist が有効かつ効率的であることが示唆された。
- 参考スコア(独自算出の注目度): 2.002741592555996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Providing various machine learning (ML) applications in the real world, concerns about discrimination hidden in ML models are growing, particularly in high-stakes domains. Existing techniques for assessing the discrimination level of ML models include commonly used group and individual fairness measures. However, these two types of fairness measures are usually hard to be compatible with each other, and even two different group fairness measures might be incompatible as well. To address this issue, we investigate to evaluate the discrimination level of classifiers from a manifold perspective and propose a "harmonic fairness measure via manifolds (HFM)" based on distances between sets. Yet the direct calculation of distances might be too expensive to afford, reducing its practical applicability. Therefore, we devise an approximation algorithm named "Approximation of distance between sets (ApproxDist)" to facilitate accurate estimation of distances, and we further demonstrate its algorithmic effectiveness under certain reasonable assumptions. Empirical results indicate that the proposed fairness measure HFM is valid and that the proposed ApproxDist is effective and efficient.
- Abstract(参考訳): 現実世界でさまざまな機械学習(ML)アプリケーションを提供することで、特に高い領域において、MLモデルに隠された識別に関する懸念が高まっている。
MLモデルの識別レベルを評価するための既存の技術には、一般的に使用されるグループと個別の公正度尺度が含まれる。
しかし、これらの2種類の公正度尺度は、通常互いに相容れないため、2つの異なる群公正度尺度でさえ相容れないかもしれない。
この問題に対処するため, 多様体の観点から分類器の識別レベルを評価するとともに, 集合間の距離に基づく「調和公正度尺度(HFM)」を提案する。
しかし、距離を直接計算するには高すぎるため、実用性が低下する可能性がある。
そこで我々は,「集合間の距離の近似(ApproxDist)」という近似アルゴリズムを考案し,そのアルゴリズムの有効性をある程度の合理的な仮定で検証する。
実験結果から,提案した公正度尺度 HFM が有効であり,提案した ApproxDist が有効かつ効率的であることが示唆された。
関連論文リスト
- Approximating Discrimination Within Models When Faced With Several Non-Binary Sensitive Attributes [4.731404257629232]
多様体の観点から,集合間の距離に基づく公平度尺度を提案する。
複数の値のいくつかの敏感な属性に対するきめ細かな識別評価を扱うことができる。
また,集合距離の計算を高速化する2つの近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T12:30:48Z) - On the Maximal Local Disparity of Fairness-Aware Classifiers [35.98015221840018]
種々の予測近傍(MCDP)に沿った最大累積比差という新しい公正度尺度を提案する。
MCDPを精度よく効率的に計算するために,推定誤差の少ない計算複雑性を大幅に低減する,証明可能な精度と近似計算アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-06-05T13:35:48Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
公平な分類モデルを学ぶための新しい min-max F-divergence regularization フレームワークを提案する。
F分割測度は凸性と微分可能性特性を有することを示す。
提案手法は, 精度と公平性のトレードオフに関して, 最先端の性能を実現するものであることを示す。
論文 参考訳(メタデータ) (2023-06-28T20:42:04Z) - Domain Adaptation meets Individual Fairness. And they get along [48.95808607591299]
アルゴリズムフェアネスの介入は、機械学習モデルが分散シフトを克服するのに役立つことを示す。
特に,個人フェアネス(IF)の適切な概念を強制することで,MLモデルの分布外精度が向上することを示す。
論文 参考訳(メタデータ) (2022-05-01T16:19:55Z) - Measure Twice, Cut Once: Quantifying Bias and Fairness in Deep Neural
Networks [7.763173131630868]
本稿では,2つのモデルのクラスワイドバイアスを定量的に評価する2つの指標を提案する。
これらの新しいメトリクスのパフォーマンスを評価し、その実践的応用を実証することにより、公平性だけでなくバイアスも測定できることを示す。
論文 参考訳(メタデータ) (2021-10-08T22:35:34Z) - Algorithmic Fairness Verification with Graphical Models [24.8005399877574]
本稿では,ベイズネットワークのような特徴間の相関を符号化する,FVGMと呼ばれる効率の良いフェアネス検証手法を提案する。
FVGMは、より多様なフェアネス向上アルゴリズムのファミリーに対して、正確でスケーラブルな評価をもたらすことを示す。
論文 参考訳(メタデータ) (2021-09-20T12:05:14Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Rethink Maximum Mean Discrepancy for Domain Adaptation [77.2560592127872]
本論文は,(1)最大平均距離の最小化は,それぞれソースとクラス内距離の最大化に等しいが,その差を暗黙の重みと共同で最小化し,特徴判別性は低下する,という2つの本質的な事実を理論的に証明する。
いくつかのベンチマークデータセットの実験は、理論的な結果の有効性を証明しただけでなく、我々のアプローチが比較した最先端手法よりも大幅に向上できることを実証した。
論文 参考訳(メタデータ) (2020-07-01T18:25:10Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Discrimination of POVMs with rank-one effects [62.997667081978825]
この研究は、ランクワン効果を持つ正の作用素値測度を識別する問題に関する洞察を与える。
パラレルとアダプティブの2つの予測手法を比較した。
この適応型スキームを見つけるための明示的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-02-13T11:34:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。