論文の概要: Teaching Robots to Grasp Like Humans: An Interactive Approach
- arxiv url: http://arxiv.org/abs/2110.04534v1
- Date: Sat, 9 Oct 2021 10:27:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-12 19:40:13.695392
- Title: Teaching Robots to Grasp Like Humans: An Interactive Approach
- Title(参考訳): ロボットに人間のように掴むことを教える:対話的アプローチ
- Authors: Anna M\'esz\'aros, Giovanni Franzese, and Jens Kober
- Abstract要約: 本研究は,実証と修正に基づいて,人間から把握する複雑な作業がどのように学習されるかを検討する。
より良いデモを提供するように訓練する代わりに、専門家でないユーザには、最初のデモのダイナミクスをインタラクティブに修正する能力が提供される。
- 参考スコア(独自算出の注目度): 3.3836709236378746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work investigates how the intricate task of grasping may be learned from
humans based on demonstrations and corrections. Due to the complexity of the
task, these demonstrations are often slow and even slightly flawed,
particularly at moments when multiple aspects (i.e., end-effector movement,
orientation, and gripper width) have to be demonstrated at once. Rather than
training a person to provide better demonstrations, non-expert users are
provided with the ability to interactively modify the dynamics of their initial
demonstration through teleoperated corrective feedback. This in turn allows
them to teach motions outside of their own physical capabilities. In the end,
the goal is to obtain a faster but reliable execution of the task. The
presented framework learns the desired movement dynamics based on the current
Cartesian Position with Gaussian Processes (GP), resulting in a reactive,
time-invariant policy. Using GPs also allows online interactive corrections and
active disturbance rejection through epistemic uncertainty minimization. The
experimental evaluation of the framework is carried out on a Franka-Emika
Panda.
- Abstract(参考訳): 本研究は,人間から手のひらをつかむことの難易度を,実演や修正によって検証する。
作業の複雑さのため、これらのデモンストレーションはしばしば遅く、特に複数の側面(例えば、エンドエフェクタの動き、方向、グリッパーの幅)を同時に示す必要がある瞬間に、多少の欠陥がある。
より良いデモを提供するように訓練する代わりに、専門家でないユーザには、遠隔操作による修正フィードバックを通じて、最初のデモのダイナミクスをインタラクティブに修正する能力が提供される。
これにより、彼ら自身の身体能力以外の動きを教えることができる。
結局のところ、ゴールはタスクの高速かつ信頼性の高い実行を得ることである。
提案フレームワークはガウス過程(GP)を用いた現在のカルテシアン位置に基づいて所望の運動力学を学習し、反応的かつ時間不変なポリシーをもたらす。
GPを使用すると、疫学的不確実性の最小化によるオンラインのインタラクティブな修正や能動的外乱の拒絶が可能である。
この枠組みの実験的評価はfranka-emika pandaを用いて行われる。
関連論文リスト
- RoboTAP: Tracking Arbitrary Points for Few-Shot Visual Imitation [36.43143326197769]
Track-Any-Point (TAP) モデルは、デモ中の関連する動きを分離し、低レベルのコントローラをパラメータ化して、シーン構成の変化をまたいでこの動きを再現する。
この結果は,形状整合,積み重ね,さらには接着や物体の付着といった完全な経路追従といった複雑な物体配置タスクを解くことのできるロバストなロボットポリシーで示される。
論文 参考訳(メタデータ) (2023-08-30T11:57:04Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
このようなパラダイムを模倣学習でどのように行うべきかを評価する。
本稿では,事前学習コーパスがマルチタスクのデモンストレーションから成り立つ環境について考察する。
逆動力学モデリングはこの設定に適していると主張する。
論文 参考訳(メタデータ) (2023-05-26T14:40:46Z) - HumanMAC: Masked Motion Completion for Human Motion Prediction [62.279925754717674]
人間の動き予測はコンピュータビジョンとコンピュータグラフィックスの古典的な問題である。
従来の効果はエンコーディング・デコード方式に基づく経験的性能を実現している。
本稿では,新しい視点から新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:34:59Z) - Out-of-Dynamics Imitation Learning from Multimodal Demonstrations [68.46458026983409]
本研究では,実演者と模倣者が同じ状態空間を持つという仮定を緩和する,動的外模擬学習(OOD-IL)について検討する。
OOD-ILは、様々なデモ参加者のデモを利用するための模倣学習を可能にするが、新しい挑戦を導入する。
我々は,この新たな課題に取り組むために,より優れた伝達可能性測定法を開発した。
論文 参考訳(メタデータ) (2022-11-13T07:45:06Z) - Eliciting Compatible Demonstrations for Multi-Human Imitation Learning [16.11830547863391]
人間による実演からの模倣学習は、ロボット操作の学習ポリシーに対する強力なアプローチである。
自然の人間の行動は、タスクを示すのに最適な方法がいくつかあるため、多くの異種性を持っている。
このミスマッチは、インタラクティブな模倣学習の課題であり、ユーザのシーケンスは、新しい、おそらく矛盾するデモを反復的に収集することによって、ポリシーを改善する。
我々は、ポストホックフィルタリングにより互換性のないデモを識別し、新しいユーザから互換性のないデモを積極的に引き出すために互換性対策を適用することができることを示す。
論文 参考訳(メタデータ) (2022-10-14T19:37:55Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single
Demonstration [8.57914821832517]
視覚的模倣学習のためのシンプルな新しい手法を導入し,新しいロボット操作タスクを1人の人間による実演から学習できるようにする。
提案手法は、状態推定問題として模倣学習をモデル化し、状態がエンドエフェクタのポーズとして定義される。
テスト時、エンドエフェクタは線形経路を通って推定状態に移動し、元のデモのエンドエフェクタ速度を単に再生する。
論文 参考訳(メタデータ) (2021-05-13T16:36:55Z) - Learning from Imperfect Demonstrations from Agents with Varying Dynamics [29.94164262533282]
我々は,実演が模倣学習にどの程度有用かを測定するために,実現可能性スコアと最適度スコアからなる指標を開発した。
シミュレーションと実ロボットによる4つの環境実験により,学習方針の改善が期待された。
論文 参考訳(メタデータ) (2021-03-10T07:39:38Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
ロボット学習を用いた動作生成の課題の1つは、人間のデモが1つのタスククエリに対して複数のモードを持つ分布に従うことである。
以前のアプローチでは、すべてのモードをキャプチャできなかったり、デモの平均モードを取得できないため、無効なトラジェクトリを生成する傾向があった。
この問題を克服する外挿能力を有するモーション生成モデルを提案する。
論文 参考訳(メタデータ) (2021-02-24T09:07:52Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
本研究では,環境と協調して対話し,専門家による実演を生かして政策を適応的に学習する新しい枠組みを提案する。
複数の人気強化学習アルゴリズムを用いた各種環境における実験結果から,提案手法はノイズの多い実演で頑健に学習可能であることが示された。
論文 参考訳(メタデータ) (2020-06-14T06:03:06Z) - State-Only Imitation Learning for Dexterous Manipulation [63.03621861920732]
本稿では,国家のみの模倣学習について考察する。
我々は、逆ダイナミクスモデルをトレーニングし、状態のみのデモンストレーションのアクションを予測するためにそれを使用します。
我々の手法は状態-作用アプローチと同等に動作し、RL単独よりもかなり優れています。
論文 参考訳(メタデータ) (2020-04-07T17:57:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。