Works with quantum resource of coherence
- URL: http://arxiv.org/abs/2110.04550v1
- Date: Sat, 9 Oct 2021 12:35:05 GMT
- Title: Works with quantum resource of coherence
- Authors: Yu-Han Ma, C. L. Liu, and C. P. Sun
- Abstract summary: We study the modification of the second law of thermodynamics for a quantum system interacting with a reservoir.
It is discovered that the coherence of the reservoir can serve as a useful resource allowing the system extract more energy from the reservoir.
- Score: 0.1274452325287335
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the modification of the second law of thermodynamics for a quantum
system interacting with a reservoir regarding quantum coherence. The whole
system is isolated so that neither energy nor information is lost. It is
discovered that the coherence of the reservoir can serves as a useful resource
allowing the system extract more energy from the reservoir; among the coherence
measures, only is the relative entropy of coherence feasible to quantitatively
characterize energy exchange. We demonstrate that a thermodynamic cycle between
two coherent reservoirs can output more work than its classical counterpart.
The efficiency of such cycle surpasses the Carnot efficiency, which is the
upper bound of heat engine efficiency in classical regime.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Demonstration of energy extraction gain from non-classical correlations [62.615368802619116]
We show that entanglement governs the amount of extractable energy in a controllable setting.
By quantifying both the concurrence of the two-qubit resource state and the energy extraction gain from applying the feedback policy, we corroborate the connection between information and energy.
arXiv Detail & Related papers (2024-04-23T08:44:07Z) - Quantum-thermodynamic enhancements in continuous thermal machines require energetic coherence [0.0]
coherence between levels with different energies can lead to genuine thermodynamic advantage.
Engines showing coherence between levels, or subjected to noise-induced coherence, are shown to be systematically outperformed by classical engines.
arXiv Detail & Related papers (2024-03-28T10:03:23Z) - Current and efficiency of bosonic systems interacting with two thermal reservoirs [0.10713888959520207]
This paper investigates the dynamics of current and efficiency in a bosonic system consisting of a central system interacting with two reservoirs at different temperatures.
We quantify the current, representing the flow of bosons through the system, and analyse its dependence on the system's parameters and temperatures of the thermal reservoirs.
Our analysis show that quantum effects, such as the dependence on temperature and the quantum correction factor, can significantly impact energy transfer efficiency.
arXiv Detail & Related papers (2024-03-18T09:48:25Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Exploiting coherence for quantum thermodynamic advantage [0.0]
We investigate the impact of coherence on the thermodynamic tasks of a collision model composed of a system interacting.
Our results show the advantages of utilising coherence as a resource in the operation of the machine.
We find an effective upper bound to the efficiency of the thermal machine operating as an engine in the presence of a coherent reservoir.
arXiv Detail & Related papers (2022-02-15T15:42:45Z) - Thermodynamics of a continuous quantum heat engine: Interplay between
population and coherence [0.0]
We present a detailed thermodynamic analysis of a three-level quantum heat engine coupled continuously to hot and cold reservoirs.
The system is driven by an oscillating external field and is described by the Markovian quantum master equation.
We calculate the heat, power, and efficiency of the system for the heat-engine operating regime and also examine the thermodynamic uncertainty relation.
arXiv Detail & Related papers (2021-07-13T09:52:01Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Non-Markovian effect on quantum Otto engine: -Role of system--reservoir
interaction- [0.0]
We study a limit cycle of a quantum Otto engine whose each cycle consists of two finite-time quantum isochoric processes.
We investigate the non-Markovian effect (short-time behavior of the reduced dynamics in the quantum isochoric processes) on work extraction after infinite repetition of the cycles.
arXiv Detail & Related papers (2020-06-24T10:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.