ck-means, a novel unsupervised learning method that combines fuzzy and
crispy clustering methods to extract intersecting data
- URL: http://arxiv.org/abs/2206.08982v1
- Date: Fri, 17 Jun 2022 19:29:50 GMT
- Title: ck-means, a novel unsupervised learning method that combines fuzzy and
crispy clustering methods to extract intersecting data
- Authors: Jean-S\'ebastien Dessureault and Daniel Massicotte
- Abstract summary: This paper proposes a method to cluster data that share the same intersections between two features or more.
The main idea of this novel method is to generate fuzzy clusters of data using a Fuzzy C-Means (FCM) algorithm.
The algorithm is also able to find the optimal number of clusters for the FCM and the k-means algorithm, according to the consistency of the clusters given by the Silhouette Index (SI)
- Score: 1.827510863075184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering data is a popular feature in the field of unsupervised machine
learning. Most algorithms aim to find the best method to extract consistent
clusters of data, but very few of them intend to cluster data that share the
same intersections between two features or more. This paper proposes a method
to do so. The main idea of this novel method is to generate fuzzy clusters of
data using a Fuzzy C-Means (FCM) algorithm. The second part involves applying a
filter that selects a range of minimum and maximum membership values,
emphasizing the border data. A {\mu} parameter defines the amplitude of this
range. It finally applies a k-means algorithm using the membership values
generated by the FCM. Naturally, the data having similar membership values will
regroup in a new crispy cluster. The algorithm is also able to find the optimal
number of clusters for the FCM and the k-means algorithm, according to the
consistency of the clusters given by the Silhouette Index (SI). The result is a
list of data and clusters that regroup data sharing the same intersection,
intersecting two features or more. ck-means allows extracting the very similar
data that does not naturally fall in the same cluster but at the intersection
of two clusters or more. The algorithm also always finds itself the optimal
number of clusters.
Related papers
- Linear time Evidence Accumulation Clustering with KMeans [0.0]
This work describes a trick which mimic the behavior of average linkage clustering.
We found a way of computing efficiently the density of a partitioning, reducing the cost from a quadratic to linear complexity.
The k-means results are comparable to the best state of the art in terms of NMI while keeping the computational cost low.
arXiv Detail & Related papers (2023-11-15T14:12:59Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Hybrid Fuzzy-Crisp Clustering Algorithm: Theory and Experiments [0.0]
We propose a hybrid fuzzy-crisp clustering algorithm based on a target function combining linear and quadratic terms of the membership function.
In this algorithm, the membership of a data point to a cluster is automatically set to exactly zero if the data point is sufficiently'' far from the cluster center.
The proposed algorithm is demonstrated to outperform the conventional methods on imbalanced datasets and can be competitive on more balanced datasets.
arXiv Detail & Related papers (2023-03-25T05:27:26Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
We propose a novel approach to improve initial cluster selection for K-means algorithm.
The Convex Hull algorithm facilitates the computing of the first two centroids and the remaining ones are selected according to the distance from previously selected centers.
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data respectively.
arXiv Detail & Related papers (2022-10-18T00:58:50Z) - K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters [0.12313056815753944]
This paper introduces k-splits, an improved hierarchical algorithm based on k-means to cluster data without prior knowledge of the number of clusters.
Accuracy and speed are two main advantages of the proposed method.
arXiv Detail & Related papers (2021-10-09T23:02:57Z) - Robust Trimmed k-means [70.88503833248159]
We propose Robust Trimmed k-means (RTKM) that simultaneously identifies outliers and clusters points.
We show RTKM performs competitively with other methods on single membership data with outliers and multi-membership data without outliers.
arXiv Detail & Related papers (2021-08-16T15:49:40Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Probabilistic Partitive Partitioning (PPP) [0.0]
Clustering algorithms, in general, face two common problems.
They converge to different settings with different initial conditions.
The number of clusters has to be arbitrarily decided beforehand.
arXiv Detail & Related papers (2020-03-09T19:18:35Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.