論文の概要: Designing off-sample performance metrics
- arxiv url: http://arxiv.org/abs/2110.04996v1
- Date: Mon, 11 Oct 2021 04:35:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-12 15:54:42.870612
- Title: Designing off-sample performance metrics
- Title(参考訳): オフサンプルパフォーマンスメトリクスの設計
- Authors: Matthew J. Holland
- Abstract要約: 優れたオフサンプルパフォーマンスをどのように定量化すべきか?」という問題を扱う学習システム構築へのアプローチを重要な設計判断として検討する。
- 参考スコア(独自算出の注目度): 6.903929927172917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern machine learning systems are traditionally designed and tested with
the overall goal of achieving the best possible performance on average. In this
work, we consider an approach to building learning systems which treats the
question of "how should we quantify good off-sample performance?" as a key
design decision. We describe this proposal using a simple and general
formulation, place the current dominant paradigm within the proper historical
context, and then survey the literature for more recent developments that
depart from tradition and can be viewed as special cases of our proposed
methodology.
- Abstract(参考訳): 現代の機械学習システムは従来、最高のパフォーマンスを達成するという全体的な目標を持って設計され、テストされてきた。
本研究では,「よいオフサンプル性能をどのように定量化するべきか?」という問いを重要な設計判断として扱う学習システム構築のアプローチを検討する。
本提案は, 単純かつ汎用的な定式化を用いて, 現在の支配的パラダイムを適切な歴史的文脈に配置し, 従来から逸脱し, 提案手法の特別な場合と見なすことのできる最近の発展について文献調査を行う。
関連論文リスト
- Embedding generalization within the learning dynamics: An approach based-on sample path large deviation theory [0.0]
本研究では,持続的視点から手法を利用する経験的リスク摂動に基づく学習問題を考察する。
大規模偏差のFreidlin-Wentzell理論に基づく小雑音限界の推定を行う。
また、最適点推定に繋がる変分問題を解く計算アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-04T23:31:35Z) - Asymptotically Optimal Regret for Black-Box Predict-then-Optimize [7.412445894287709]
我々は,特別な構造を欠いた新たなブラックボックス予測最適化問題と,その行動から得られる報酬のみを観察する方法について検討した。
本稿では,経験的ソフトレグレット(ESR, Empirical Soft Regret)と呼ばれる新しい損失関数を提案する。
また、私たちのアプローチは、ニュースレコメンデーションやパーソナライズされた医療における現実の意思決定問題において、最先端のアルゴリズムよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-06-12T04:46:23Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
本手法は,文献から得られた4つの領域において,最先端の成果が得られることを示す。
提案手法は, 局所性仮定が破られた場合, 既存手法よりも200%近く性能が向上する。
論文 参考訳(メタデータ) (2023-05-26T11:17:45Z) - A survey and taxonomy of loss functions in machine learning [51.35995529962554]
本稿では, 回帰, 分類, 生成モデル, ランキング, エネルギーベースモデリングなど, 主要なアプリケーションにまたがる最も広く使われている損失関数について概観する。
直感的な分類法で構築された43個の個別の損失関数を導入し,それらの理論的基礎,特性,最適な適用状況を明らかにした。
論文 参考訳(メタデータ) (2023-01-13T14:38:24Z) - A Survey on Deep Industrial Transfer Learning in Fault Prognostics [0.0]
本稿では,この分野での今後の研究のベストプラクティスを確立することを目的とする。
この分野では、結果を堅牢に比較し、科学的進歩を促進するための一般的なベンチマークが欠落していることが示されている。
これらの出版物で利用されるデータセットを調査し、このようなベンチマークシナリオに適した候補を特定する。
論文 参考訳(メタデータ) (2023-01-04T17:01:27Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
不完全な注釈付きデータセットからバイアスのない分類モデルを学ぶことは困難である。
本稿では,様々な学習に基づく分類手法に容易に組み込むことができるプロトタイプ・アンコレッド学習法を提案する。
我々は,PALがクラス不均衡学習および耐雑音学習に与える影響を,合成および実世界のデータセットに関する広範な実験により検証した。
論文 参考訳(メタデータ) (2022-06-23T10:25:37Z) - Learning Towards the Largest Margins [83.7763875464011]
損失関数は、クラスとサンプルの両方の最大のマージンを促進するべきである。
この原則化されたフレームワークは、既存のマージンベースの損失を理解し、解釈するための新しい視点を提供するだけでなく、新しいツールの設計を導くことができます。
論文 参考訳(メタデータ) (2022-06-23T10:03:03Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
教師なし方式で,単純かつ効果的な脱バイアス手法を提案する。
特徴埋め込み空間上でクラスタリングを行い、クラスタリング結果を利用して疑似属性を識別する。
次に,非偏り表現を学習するために,クラスタベースの新しい重み付け手法を用いる。
論文 参考訳(メタデータ) (2021-08-06T05:20:46Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z) - Learning Unbiased Representations via Mutual Information Backpropagation [36.383338079229695]
特に、モデルによって学習された場合、データのいくつかの属性(バイアス)が一般化特性を著しく損なう可能性がある場合に直面します。
本稿では,学習した表現とデータ属性の相互情報を同時に推定し,最小化する,新しいエンドツーエンド最適化手法を提案する。
論文 参考訳(メタデータ) (2020-03-13T18:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。