論文の概要: A Survey of Learning Criteria Going Beyond the Usual Risk
- arxiv url: http://arxiv.org/abs/2110.04996v3
- Date: Thu, 30 Nov 2023 00:09:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 21:05:05.063867
- Title: A Survey of Learning Criteria Going Beyond the Usual Risk
- Title(参考訳): 通常のリスクを超越した学習条件の検討
- Authors: Matthew J. Holland and Kazuki Tanabe
- Abstract要約: グッドパフォーマンス」は、テストデータのランダムな引き分けに乗じて、十分に小さな平均損失という観点で記述されるのが一般的である。
平均的なパフォーマンスを最適化することは直感的であり、理論上は解析しやすく、実際は容易に実装できるが、そのような選択はトレードオフをもたらす。
- 参考スコア(独自算出の注目度): 7.335712499936906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Virtually all machine learning tasks are characterized using some form of
loss function, and "good performance" is typically stated in terms of a
sufficiently small average loss, taken over the random draw of test data. While
optimizing for performance on average is intuitive, convenient to analyze in
theory, and easy to implement in practice, such a choice brings about
trade-offs. In this work, we survey and introduce a wide variety of
non-traditional criteria used to design and evaluate machine learning
algorithms, place the classical paradigm within the proper historical context,
and propose a view of learning problems which emphasizes the question of "what
makes for a desirable loss distribution?" in place of tacit use of the expected
loss.
- Abstract(参考訳): 事実上、すべての機械学習タスクはある種の損失関数を使って特徴づけられ、"良いパフォーマンス"は通常、テストデータのランダムな引き分けに乗じて、十分に小さな平均損失で記述される。
平均的なパフォーマンスの最適化は直感的であり、理論的に解析しやすく、実際は容易に実装できるが、そのような選択はトレードオフをもたらす。
本研究では,機械学習アルゴリズムの設計と評価,古典的パラダイムを適切な歴史的文脈に置くための非伝統的基準の多種多様な調査と紹介を行い,期待損失を暗黙的に利用する代わりに「望ましい損失分布に何をもたらすのか」という課題を強調する学習問題の視点を提案する。
関連論文リスト
- Embedding generalization within the learning dynamics: An approach based-on sample path large deviation theory [0.0]
本研究では,持続的視点から手法を利用する経験的リスク摂動に基づく学習問題を考察する。
大規模偏差のFreidlin-Wentzell理論に基づく小雑音限界の推定を行う。
また、最適点推定に繋がる変分問題を解く計算アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-04T23:31:35Z) - Asymptotically Optimal Regret for Black-Box Predict-then-Optimize [7.412445894287709]
我々は,特別な構造を欠いた新たなブラックボックス予測最適化問題と,その行動から得られる報酬のみを観察する方法について検討した。
本稿では,経験的ソフトレグレット(ESR, Empirical Soft Regret)と呼ばれる新しい損失関数を提案する。
また、私たちのアプローチは、ニュースレコメンデーションやパーソナライズされた医療における現実の意思決定問題において、最先端のアルゴリズムよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-06-12T04:46:23Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
本手法は,文献から得られた4つの領域において,最先端の成果が得られることを示す。
提案手法は, 局所性仮定が破られた場合, 既存手法よりも200%近く性能が向上する。
論文 参考訳(メタデータ) (2023-05-26T11:17:45Z) - A survey and taxonomy of loss functions in machine learning [60.41650195728953]
ほとんどの最先端の機械学習技術は、損失関数の最適化を中心に進化している。
この調査は、初心者と高度な機械学習実践者の両方にとって最も重要な損失関数の参照を提供することを目的としている。
論文 参考訳(メタデータ) (2023-01-13T14:38:24Z) - A Survey on Deep Industrial Transfer Learning in Fault Prognostics [0.0]
本稿では,この分野での今後の研究のベストプラクティスを確立することを目的とする。
この分野では、結果を堅牢に比較し、科学的進歩を促進するための一般的なベンチマークが欠落していることが示されている。
これらの出版物で利用されるデータセットを調査し、このようなベンチマークシナリオに適した候補を特定する。
論文 参考訳(メタデータ) (2023-01-04T17:01:27Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
不完全な注釈付きデータセットからバイアスのない分類モデルを学ぶことは困難である。
本稿では,様々な学習に基づく分類手法に容易に組み込むことができるプロトタイプ・アンコレッド学習法を提案する。
我々は,PALがクラス不均衡学習および耐雑音学習に与える影響を,合成および実世界のデータセットに関する広範な実験により検証した。
論文 参考訳(メタデータ) (2022-06-23T10:25:37Z) - Learning Towards the Largest Margins [83.7763875464011]
損失関数は、クラスとサンプルの両方の最大のマージンを促進するべきである。
この原則化されたフレームワークは、既存のマージンベースの損失を理解し、解釈するための新しい視点を提供するだけでなく、新しいツールの設計を導くことができます。
論文 参考訳(メタデータ) (2022-06-23T10:03:03Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
教師なし方式で,単純かつ効果的な脱バイアス手法を提案する。
特徴埋め込み空間上でクラスタリングを行い、クラスタリング結果を利用して疑似属性を識別する。
次に,非偏り表現を学習するために,クラスタベースの新しい重み付け手法を用いる。
論文 参考訳(メタデータ) (2021-08-06T05:20:46Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。