Accelerating Multi-Objective Neural Architecture Search by Random-Weight
Evaluation
- URL: http://arxiv.org/abs/2110.05242v1
- Date: Fri, 8 Oct 2021 06:35:20 GMT
- Title: Accelerating Multi-Objective Neural Architecture Search by Random-Weight
Evaluation
- Authors: Shengran Hu, Ran Cheng, Cheng He, Zhichao Lu, Jing Wang, Miao Zhang
- Abstract summary: We introduce a new performance estimation metric named Random-Weight Evaluation (RWE) to quantify the quality of CNNs.
RWE only trains its last layer and leaves the remainders with randomly weights, which results in a single network evaluation in seconds.
Our proposed method obtains a set of efficient models with state-of-the-art performance in two real-world search spaces.
- Score: 24.44521525130034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For the goal of automated design of high-performance deep convolutional
neural networks (CNNs), Neural Architecture Search (NAS) methodology is
becoming increasingly important for both academia and industries.Due to the
costly stochastic gradient descent (SGD) training of CNNs for performance
evaluation, most existing NAS methods are computationally expensive for
real-world deployments. To address this issue, we first introduce a new
performance estimation metric, named Random-Weight Evaluation (RWE) to quantify
the quality of CNNs in a cost-efficient manner. Instead of fully training the
entire CNN, the RWE only trains its last layer and leaves the remainders with
randomly initialized weights, which results in a single network evaluation in
seconds.Second, a complexity metric is adopted for multi-objective NAS to
balance the model size and performance. Overall, our proposed method obtains a
set of efficient models with state-of-the-art performance in two real-world
search spaces. Then the results obtained on the CIFAR-10 dataset are
transferred to the ImageNet dataset to validate the practicality of the
proposed algorithm. Moreover, ablation studies on NAS-Bench-301 datasets reveal
the effectiveness of the proposed RWE in estimating the performance compared
with existing methods.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices.
One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS.
We introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs.
arXiv Detail & Related papers (2023-06-27T11:28:29Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning [34.27089256930098]
We propose a novel neural network retrieval method, which retrieves the most optimal pre-trained network for a given task.
We train this framework by meta-learning a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a network.
We validate the efficacy of our method on ten real-world datasets, against existing NAS baselines.
arXiv Detail & Related papers (2021-03-02T06:30:51Z) - PEng4NN: An Accurate Performance Estimation Engine for Efficient
Automated Neural Network Architecture Search [0.0]
Neural network (NN) models are increasingly used in scientific simulations, AI, and other high performance computing fields.
NAS attempts to find well-performing NN models for specialized datsets, where performance is measured by key metrics that capture the NN capabilities.
We propose a performance estimation strategy that reduces the resources for training NNs and increases NAS throughput without jeopardizing accuracy.
arXiv Detail & Related papers (2021-01-11T20:49:55Z) - Multi-objective Neural Architecture Search with Almost No Training [9.93048700248444]
We propose an effective alternative, dubbed Random-Weight Evaluation (RWE), to rapidly estimate the performance of network architectures.
RWE reduces the computational cost of evaluating an architecture from hours to seconds.
When integrated within an evolutionary multi-objective algorithm, RWE obtains a set of efficient architectures with state-of-the-art performance on CIFAR-10 with less than two hours' searching on a single GPU card.
arXiv Detail & Related papers (2020-11-27T07:39:17Z) - Effective, Efficient and Robust Neural Architecture Search [4.273005643715522]
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS)
We propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration.
Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
arXiv Detail & Related papers (2020-11-19T13:46:23Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
We present an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking.
We run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints.
FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors.
arXiv Detail & Related papers (2020-06-03T05:20:21Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.