論文の概要: Point Cloud Augmentation with Weighted Local Transformations
- arxiv url: http://arxiv.org/abs/2110.05379v1
- Date: Mon, 11 Oct 2021 16:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-12 18:31:38.893262
- Title: Point Cloud Augmentation with Weighted Local Transformations
- Title(参考訳): 軽量局所変換によるポイントクラウド拡張
- Authors: Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee, Seong Jae Hwang,
Hyunwoo J. Kim
- Abstract要約: 本稿では,ポイントクラウド拡張のためのポイントWOLFという,シンプルで効果的な拡張手法を提案する。
提案手法は, 複数のアンカー点を中心とする局所重み付け変換により, 滑らかに変化する非剛性変形を生成する。
AugTuneは、目標とする信頼性スコアを生成するために、望ましい課題の強化されたサンプルを生成する。
- 参考スコア(独自算出の注目度): 14.644850090688406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the extensive usage of point clouds in 3D vision, relatively limited
data are available for training deep neural networks. Although data
augmentation is a standard approach to compensate for the scarcity of data, it
has been less explored in the point cloud literature. In this paper, we propose
a simple and effective augmentation method called PointWOLF for point cloud
augmentation. The proposed method produces smoothly varying non-rigid
deformations by locally weighted transformations centered at multiple anchor
points. The smooth deformations allow diverse and realistic augmentations.
Furthermore, in order to minimize the manual efforts to search the optimal
hyperparameters for augmentation, we present AugTune, which generates augmented
samples of desired difficulties producing targeted confidence scores. Our
experiments show our framework consistently improves the performance for both
shape classification and part segmentation tasks. Particularly, with
PointNet++, PointWOLF achieves the state-of-the-art 89.7 accuracy on shape
classification with the real-world ScanObjectNN dataset.
- Abstract(参考訳): 3Dビジョンでポイントクラウドが広く使用されているにもかかわらず、ディープニューラルネットワークのトレーニングには比較的限られたデータが利用できる。
データ拡張はデータの不足を補う標準的なアプローチであるが、point cloudの文献ではあまり研究されていない。
本稿では,ポイントクラウド拡張のためのポイントWOLFと呼ばれる簡易かつ効果的な拡張手法を提案する。
提案手法は, 複数のアンカー点を中心とする局所重み付け変換により, 滑らかに変化する非剛性変形を生成する。
滑らかな変形は多様で現実的な拡張を可能にする。
さらに, 最適ハイパーパラメータを探索するための手作業を最小限に抑えるために, 目標信頼度スコアを生成するために, 希望する難易度を増大させたサンプルを生成する augtune を提案する。
本実験は, 形状分類と部分分割の両タスクの性能を連続的に向上することを示す。
特に PointNet++ では、PointWOLF は実世界の ScanObjectNN データセットを用いて、形状分類における最先端の 89.7 の精度を達成している。
関連論文リスト
- Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) は、適応トークン選択機構によって強化された標準PTモデルである。
AdaPTは推論中のトークン数を動的に削減し、大きな点雲の効率的な処理を可能にする。
論文 参考訳(メタデータ) (2024-01-26T13:24:45Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
データ拡張は、ディープラーニングタスクのパフォーマンスを向上させるための強力なテクニックである。
本研究は,3次元点雲に対するTTA(Test-time augmentation)について検討する。
論文 参考訳(メタデータ) (2023-11-22T04:31:09Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA)は、新しくて効率的なデータ拡張技術である。
BAは、既存の3D構造にスムーズな非剛性変形を与えることにより、点雲データを多様化する。
本稿では,先進的なオンライン強化システムであるAdvTuneについて紹介する。
論文 参考訳(メタデータ) (2023-11-10T14:04:49Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
我々は、パッチレベルでポイントクラウドを混合し、混合ポイントクラウドのコンテンツベースターゲットを生成するPointPatchMixを提案する。
パッチスコアリングモジュールは、事前学習した教師モデルから、コンテンツに基づく重要度スコアに基づいて目標を割り当てる。
Point-MAE をベースラインとして,ScanObjectNN では86.3%,ModelNet40 では94.1% の精度で,従来の手法をかなり上回りました。
論文 参考訳(メタデータ) (2023-03-12T14:49:42Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
弱制御点雲分割のための新しいDATモデル(textbfDual textbfAdaptive textbfTransformations)を提案する。
我々は,大規模S3DISデータセットとScanNet-V2データセットの2つの人気バックボーンを用いたDATモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-19T05:43:14Z) - DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic
Voxelization [0.0]
本稿では,効率的な3Dポイント・クラウド・オブジェクト検出のための新しい2段階フレームワークを提案する。
生のクラウドデータを3D空間で直接解析するが、目覚ましい効率と精度を実現する。
我々は,75 FPSでKITTI 3Dオブジェクト検出データセットを,25 FPSの推論速度で良好な精度でOpenデータセット上で強調する。
論文 参考訳(メタデータ) (2021-07-27T10:07:39Z) - Learning Rotation-Invariant Representations of Point Clouds Using
Aligned Edge Convolutional Neural Networks [29.3830445533532]
ポイントクラウド分析は、シーンの深さを正確に測定できる3Dセンサーの開発によって、関心が高まる分野である。
点群解析に深層学習技術を適用することは、これらの手法が見えない回転に一般化できないため、簡単ではありません。
この制限に対処するには、通常、トレーニングデータを強化する必要があり、これは余分な計算につながる可能性があり、より大きなモデルの複雑さを必要とする。
本稿では,局所参照フレーム(LRF)に対する点群の特徴表現を学習する,Aligned Edge Convolutional Neural Network(AECNN)と呼ばれる新しいニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-01-02T17:36:00Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。