論文の概要: Differentiable Stereopsis: Meshes from multiple views using
differentiable rendering
- arxiv url: http://arxiv.org/abs/2110.05472v1
- Date: Mon, 11 Oct 2021 17:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-12 18:28:57.020347
- Title: Differentiable Stereopsis: Meshes from multiple views using
differentiable rendering
- Title(参考訳): 微分可能ステレオプシス:微分可能レンダリングを用いた複数ビューからのメッシュ
- Authors: Shubham Goel, Georgia Gkioxari, Jitendra Malik
- Abstract要約: 少ない入力ビューとノイズの多いカメラから形状とテクスチャを再構成する多視点ステレオ手法である微分ステレオシステムを提案する。
従来のステレオプシスと現代的な微分可能レンダリングを組み合わせて、さまざまなトポロジと形状を持つオブジェクトのテクスチャ化された3Dメッシュを予測するエンドツーエンドモデルを構築します。
- 参考スコア(独自算出の注目度): 72.25348629612782
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose Differentiable Stereopsis, a multi-view stereo approach that
reconstructs shape and texture from few input views and noisy cameras. We pair
traditional stereopsis and modern differentiable rendering to build an
end-to-end model which predicts textured 3D meshes of objects with varying
topologies and shape. We frame stereopsis as an optimization problem and
simultaneously update shape and cameras via simple gradient descent. We run an
extensive quantitative analysis and compare to traditional multi-view stereo
techniques and state-of-the-art learning based methods. We show compelling
reconstructions on challenging real-world scenes and for an abundance of object
types with complex shape, topology and texture. Project webpage:
https://shubham-goel.github.io/ds/
- Abstract(参考訳): 少ない入力ビューとノイズの多いカメラから形状とテクスチャを再構成する多視点ステレオ手法である微分ステレオシステムを提案する。
従来のステレオプシと現代の微分可能レンダリングを組み合わせることで、さまざまなトポロジや形状のオブジェクトのテクスチャ化された3dメッシュを予測するエンドツーエンドモデルを構築します。
ステレオプシスを最適化問題とし、簡単な勾配降下により形状とカメラを同時に更新する。
定量的解析を行い,従来の多視点ステレオ手法と最先端学習法との比較を行った。
実世界の課題や複雑な形状、トポロジー、テクスチャを持つ多彩なオブジェクトタイプに対して、説得力のある再構成を示す。
プロジェクトwebページ: https://shubham-goel.github.io/ds/
関連論文リスト
- Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
本稿では,3次元プリミティブを用いて,シンプルでコンパクトで動作可能な3次元世界表現を実現する手法を提案する。
既存の3次元入力データに依存するプリミティブ分解法とは異なり,本手法は画像を直接操作する。
得られたテクスチャ化されたプリミティブは入力画像を忠実に再構成し、視覚的な3Dポイントを正確にモデル化する。
論文 参考訳(メタデータ) (2023-07-11T17:58:31Z) - Learning to Render Novel Views from Wide-Baseline Stereo Pairs [26.528667940013598]
本稿では,単一の広線ステレオ画像ペアのみを付与した新しいビュー合成手法を提案する。
スパース観測による新しいビュー合成への既存のアプローチは、誤った3次元形状の復元によって失敗する。
対象光線に対する画像特徴を組み立てるための,効率的な画像空間のエピポーラ線サンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:40:52Z) - TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering [54.35405028643051]
スマートフォン1台でテクスチャ化されたメッシュを野生で取得するパイプラインを新たに提案する。
提案手法ではまず,RGBD支援構造を動きから導入し,フィルタした深度マップを作成できる。
我々は,高品質なメッシュを実現するニューラル暗黙表面再構成法を採用する。
論文 参考訳(メタデータ) (2023-03-27T10:07:52Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
カメラポーズの有無にかかわらず、少数のカラー画像から3次元メッシュ表現における形状生成の問題について検討する。
我々は,グラフ畳み込みネットワークを用いたクロスビュー情報を活用することにより,形状品質をさらに向上する。
我々のモデルは初期メッシュの品質とカメラポーズの誤差に頑健であり、テスト時間最適化のための微分関数と組み合わせることができる。
論文 参考訳(メタデータ) (2022-04-21T03:42:31Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Shape From Tracing: Towards Reconstructing 3D Object Geometry and SVBRDF
Material from Images via Differentiable Path Tracing [16.975014467319443]
識別可能なパストレースは、複雑な外観効果を再現できるため、魅力的なフレームワークである。
本稿では,初期粗いメッシュとメッシュファセット単位の材料表現を改良するために,微分可能なレイトレーシングを利用する方法を示す。
また、制約のない環境下での現実世界の物体の初期再構成を洗練させる方法についても示す。
論文 参考訳(メタデータ) (2020-12-06T18:55:35Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONetは、単一画像から多目的3Dシーンの分解と表現を学習するための新しいアプローチである。
リカレントエンコーダは、入力されたRGB画像から、各オブジェクトの3D形状、ポーズ、テクスチャの潜時表現を回帰する。
我々は,3次元シーンレイアウトの推測におけるモデルの精度を評価し,その生成能力を実証し,実画像への一般化を評価し,学習した表現の利点を指摘する。
論文 参考訳(メタデータ) (2020-10-08T14:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。