論文の概要: Program Transfer and Ontology Awareness for Semantic Parsing in KBQA
- arxiv url: http://arxiv.org/abs/2110.05743v2
- Date: Wed, 13 Oct 2021 13:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-14 11:16:11.920160
- Title: Program Transfer and Ontology Awareness for Semantic Parsing in KBQA
- Title(参考訳): KBQAにおける意味解析のためのプログラム転送とオントロジー
- Authors: Shulin Cao, Jiaxin Shi, Zijun Yao, Lei Hou, Juanzi Li, Jinghui Xiao
- Abstract要約: 外部論理形式アノテーションとオントロジーレベルの制約から事前知識を考察する。
本手法は,最先端のF1スコアを44.0%から58.7%に改善し,14.7%の絶対値を得た。
- 参考スコア(独自算出の注目度): 25.80892652628066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic parsing in KBQA aims to parse natural language questions into
logical forms, whose execution against a knowledge base produces answers.
Learning semantic parsers from question-answer pairs requires searching over a
huge space of logical forms for ones consistent with answers. Current methods
utilize various prior knowlege or entity-level KB constraints to reduce the
search space. In this paper, we investigate for the first time prior knowledge
from external logical form annotations and ontology-level constraints. We
design a hierarchical architecture for program transfer, and propose an
ontology-guided pruning algorithm to reduce the search space. The experiments
on ComplexWebQuestions show that our method improves the state-of-the-art F1
score from 44.0% to 58.7%, with an absolute gain of 14.7%, which demonstrates
the effectiveness of program transfer and ontology awareness.
- Abstract(参考訳): KBQAの意味解析は、自然言語の質問を論理形式に解析することを目的としており、知識ベースに対する実行は答えを生み出す。
質問と回答のペアからセマンティックパーサーを学習するには、答えに整合した論理形式の巨大な空間を探索する必要がある。
現在の手法では、検索空間を減らすために様々な事前知識やエンティティレベルのkb制約を利用する。
本稿では,外部論理形アノテーションとオントロジレベルの制約から,初めて事前知識を検討する。
プログラム転送のための階層的アーキテクチャを設計し,探索空間を削減するためのオントロジー誘導プルーニングアルゴリズムを提案する。
コンプレックス・ウェブ・クエスト(complexwebquestion)の実験により、この手法は最先端のf1スコアを44.0%から58.7%に改善し、絶対的なゲインは14.7%となり、プログラムの転送とオントロジーの認識の有効性が示された。
関連論文リスト
- BoolQuestions: Does Dense Retrieval Understand Boolean Logic in Language? [88.29075896295357]
まず,現在の検索システムが,言語に暗示されるブール論理を理解できるかを検討する。
広範な実験結果から,現在の高密度検索システムはブール論理を十分に理解していないという結論を導いた。
本研究では,研究コミュニティの強力な基盤となるコントラスト的連続学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-19T05:19:53Z) - ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models [19.85526116658481]
本稿では,新規かつ簡易な生成検索KBQAフレームワークであるChatKBQAを紹介する。
実験の結果,ChatKBQAは標準KBQAデータセット上で新たな最先端性能を実現することがわかった。
この研究は、LLMと知識グラフを組み合わせるための新しいパラダイムとして、解釈可能および知識要求型質問応答のパラダイムと見なすこともできる。
論文 参考訳(メタデータ) (2023-10-13T09:45:14Z) - Bridging the KB-Text Gap: Leveraging Structured Knowledge-aware
Pre-training for KBQA [28.642711264323786]
テキストと構造化KBのギャップを埋める構造化知識認識事前学習法(SKP)を提案する。
事前学習の段階では、複雑な部分グラフの暗黙的関係とより良い表現を効果的に学習するためにモデルを導くという、2つの新しい構造化された知識認識タスクを導入する。
下流KBQAタスクでは、より効率的な線形化戦略とインターバルアテンション機構を設計し、複雑なサブグラフの符号化を支援する。
論文 参考訳(メタデータ) (2023-08-28T09:22:02Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - DecAF: Joint Decoding of Answers and Logical Forms for Question
Answering over Knowledge Bases [81.19499764899359]
本稿では,論理形式と直解の両方を共同で生成する新しいフレームワークDecAFを提案する。
DecAFはWebQSP、FreebaseQA、GrailQAベンチマークで新しい最先端の精度を実現している。
論文 参考訳(メタデータ) (2022-09-30T19:51:52Z) - Knowledge Base Question Answering: A Semantic Parsing Perspective [15.1388686976988]
知識ベース(KBQA)に対する質問応答の研究は、比較的ゆっくりと進んでいる。
KBQAには,スキーマレベルの複雑性とファクトレベルの複雑性という,2つのユニークな課題があります。
我々は、セマンティックパーシングの文献から、まだ多くのインスピレーションを得ることができると論じている。
論文 参考訳(メタデータ) (2022-09-12T02:56:29Z) - Efficient Contextualization using Top-k Operators for Question Answering
over Knowledge Graphs [24.520002698010856]
本研究は,KB対応信号を用いて検索空間の無関係な部分を抽出する効率的なECQAを提案する。
最近の2つのQAベンチマークによる実験では、解答の有無、検索空間のサイズ、ランタイムに関して、最先端のベースラインよりもECQAの方が優れていることが示されている。
論文 参考訳(メタデータ) (2021-08-19T10:06:14Z) - Enforcing Consistency in Weakly Supervised Semantic Parsing [68.2211621631765]
本稿では,関連する入力に対する出力プログラム間の整合性を利用して,スプリアスプログラムの影響を低減することを提案する。
より一貫性のあるフォーマリズムは、一貫性に基づくトレーニングを必要とせずに、モデルパフォーマンスを改善することにつながります。
論文 参考訳(メタデータ) (2021-07-13T03:48:04Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
本稿では,意味解析と推論に基づくニューロシンボリック質問回答システムを提案する。
NSQAはQALD-9とLC-QuAD 1.0で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-12-03T05:17:55Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
知識ベース(KB)に対する質問回答(QA)は、自然言語の質問に自動的に答えることを目的としている。
研究者は、よりKBのトリプルと制約推論を必要とする単純な質問から複雑な質問へと注意を移した。
論文 参考訳(メタデータ) (2020-07-26T07:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。