論文の概要: text2sdg: An open-source solution to monitoring sustainable development
goals from text
- arxiv url: http://arxiv.org/abs/2110.05856v1
- Date: Tue, 12 Oct 2021 09:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-13 22:24:00.720271
- Title: text2sdg: An open-source solution to monitoring sustainable development
goals from text
- Title(参考訳): text2sdg:テキストから持続可能な開発目標を監視するオープンソースソリューション
- Authors: Dirk U. Wulff, Rui Mata, Dominik S. Meier
- Abstract要約: ユーザフレンドリーなオープンソースパッケージであるtext2sdg R パッケージを,テキストソースから複数の異なるクエリシステムを用いて,任意のテキストデータ中のSDGを検出する。
text2sdgパッケージは、幅広いテキストソースに対するSDGの監視を容易にし、テキストからSDGを検出する方法の検証と改善のための、待望の基盤を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Monitoring progress on the United Nations Sustainable Development Goals
(SDGs) is important for both academic and non-academic organizations. Existing
approaches to monitoring SDGs have focused on specific data types, namely,
publications listed in proprietary research databases. We present the text2sdg
R package, a user-friendly, open-source package that detects SDGs in any kind
of text data using several different query systems from any text source. The
text2sdg package thereby facilitates the monitoring of SDGs for a wide array of
text sources and provides a much-needed basis for validating and improving
extant methods to detect SDGs from text.
- Abstract(参考訳): 国連持続可能な開発目標(sdgs)の監視は学術組織と非学術組織の両方にとって重要である。
sdgを監視する既存のアプローチは、特定のデータタイプ、すなわちプロプライエタリな研究データベースにリストされた出版物に焦点を当てている。
ユーザフレンドリーなオープンソースパッケージであるtext2sdg R パッケージを,テキストソースから複数の異なるクエリシステムを用いて,任意のテキストデータ中のSDGを検出する。
text2sdgパッケージは、幅広いテキストソースに対するSDGの監視を容易にし、テキストからSDGを検出する既存のメソッドを検証および改善するための、待望の基盤を提供する。
関連論文リスト
- VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では,視覚言語モデル(VLM)に基づくRAGパイプラインを構築することで,この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs [14.437863803271808]
Text-Attributed Graphs (TAG)は、自然言語記述によるグラフ構造を強化し、データとその相互接続の詳細な描写を容易にする。
既存のTAGデータセットは、主にノードでのみテキスト情報を特徴付けており、エッジは通常、単なるバイナリまたはカテゴリ属性で表される。
このギャップに対処するため、ノードとエッジにリッチなテキスト記述を備えたTextual-Edge Graphsデータセットを導入しました。
論文 参考訳(メタデータ) (2024-06-14T06:22:47Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
Detect Any Text"は、シーンテキストの検出、レイアウト分析、ドキュメントページの検出を結合的なエンドツーエンドモデルに統合する高度なパラダイムである。
DATにおける重要なイノベーションは、テキストインスタンスの表現学習を大幅に強化する、粒度横断型アテンションモジュールである。
テストによると、DATは様々なテキスト関連ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-05-30T07:25:23Z) - GPT-generated Text Detection: Benchmark Dataset and Tensor-based
Detection Method [4.802604527842989]
GPT Reddit データセット(GRiD)は,GPT(Generative Pretrained Transformer)によって生成された新しいテキスト検出データセットである。
データセットは、Redditに基づくコンテキストプロンプトペアと、人間生成とChatGPT生成のレスポンスで構成されている。
データセットの有用性を示すために、我々は、その上でいくつかの検出方法をベンチマークし、人間とChatGPTが生成する応答を区別する効果を実証した。
論文 参考訳(メタデータ) (2024-03-12T05:15:21Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - On Exploring and Improving Robustness of Scene Text Detection Models [20.15225372544634]
我々はシーンテキスト検出モデル ICDAR2015-C (IC15-C) と CTW1500-C (CTW-C) を評価した。
我々は、事前学習データ、バックボーン、機能融合モジュール、マルチスケール予測、テキストインスタンスの表現、損失関数の6つの重要なコンポーネントのロバストネス分析を行う。
本研究では,背景と前景を融合することでテキスト領域の滑らかさを破壊する,シンプルで効果的なデータベース手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T02:36:48Z) - Textual Data Distributions: Kullback Leibler Textual Distributions
Contrasts on GPT-2 Generated Texts, with Supervised, Unsupervised Learning on
Vaccine & Market Topics & Sentiment [0.0]
効率的なテキストデータ分散(TDD)アライメントと生成は、テキスト分析とNLPにおけるオープンな研究課題である。
我々は、KL Textual Distributions Contrastsという、Kulback-Leibler分散アプリケーションからTDDへの独自のプロセス駆動のバリエーションを開発した。
そこで本研究では、トピックと感情によるTDDの生成と検証のためのユニークなアプローチを特定します。
論文 参考訳(メタデータ) (2021-06-15T21:30:46Z) - Deep Graph Matching and Searching for Semantic Code Retrieval [76.51445515611469]
本稿では,グラフニューラルネットワークに基づくエンドツーエンドのディープグラフマッチングと探索モデルを提案する。
まず、自然言語クエリテキストとプログラミング言語のコードスニペットをグラフ構造化データで表現する。
特に、DGMSは、個々のクエリテキストやコードスニペットのより構造的な情報をキャプチャするだけでなく、それらの微妙な類似性も学習する。
論文 参考訳(メタデータ) (2020-10-24T14:16:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。