Hide and seek with quantum resources: New and modified protocols for
quantum steganography
- URL: http://arxiv.org/abs/2110.05893v1
- Date: Tue, 12 Oct 2021 11:06:49 GMT
- Title: Hide and seek with quantum resources: New and modified protocols for
quantum steganography
- Authors: Rohan Joshi, Akhil Gupta, Kishore Thapliyal, R Srikanth, Anirban
Pathak
- Abstract summary: Steganography is the science of hiding and communicating a secret message by embedding it in an innocent looking text.
It has been shown that such protocols are vulnerable to a certain steganalysis attack that can detect the presence of the hidden message and suppress the entire communication.
We propose a novel steganography protocol using discrete modulation continuous variable QKD that eliminates the threat of this detection-based attack.
- Score: 2.9398911304923447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Steganography is the science of hiding and communicating a secret message by
embedding it in an innocent looking text such that the eavesdropper is unaware
of its existence. Previously, attempts were made to establish steganography
using quantum key distribution (QKD). Recently, it has been shown that such
protocols are vulnerable to a certain steganalysis attack that can detect the
presence of the hidden message and suppress the entire communication. In this
work, we elaborate on the vulnerabilities of the original protocol which make
it insecure against this detection attack. Further, we propose a novel
steganography protocol using discrete modulation continuous variable QKD that
eliminates the threat of this detection-based attack. Deriving from the
properties of our protocol, we also propose modifications in the original
protocol to dispose of its vulnerabilities and make it insusceptible to
steganalysis.
Related papers
- Deep-learning-based continuous attacks on quantum key distribution protocols [0.0]
We design a new attack scheme that exploits continuous measurement together with the powerful pattern recognition capacities of deep recurrent neural networks.
We show that, when applied to the BB84 protocol, our attack can be difficult to notice while still allowing the spy to extract significant information about the states of the qubits sent in the quantum communication channel.
arXiv Detail & Related papers (2024-08-22T17:39:26Z) - Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
Unregulated use of LLMs can potentially lead to malicious consequences such as plagiarism, generating fake news, spamming, etc.
Recent works attempt to tackle this problem either using certain model signatures present in the generated text outputs or by applying watermarking techniques.
In this paper, we show that these detectors are not reliable in practical scenarios.
arXiv Detail & Related papers (2023-03-17T17:53:19Z) - Perfectly Secure Steganography Using Minimum Entropy Coupling [60.154855689780796]
We show that a steganography procedure is perfectly secure under Cachin 1998's information-theoretic model of steganography.
We also show that, among perfectly secure procedures, a procedure maximizes information throughput if and only if it is induced by a minimum entropy coupling.
arXiv Detail & Related papers (2022-10-24T17:40:07Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable
Quantum Key Distribution with High Excess Noise Tolerance [7.87972015113057]
We propose a homodyne detection protocol using the quadrature phase shift keying technique.
By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level.
Our results imply that the current protocol is able to distribute keys in nearly intercity area.
arXiv Detail & Related papers (2021-04-22T16:10:35Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Quantum Secure Direct Communication with Mutual Authentication using a
Single Basis [2.9542356825059715]
We propose a new theoretical scheme for quantum secure direct communication (QSDC) with user authentication.
The present protocol uses only one orthogonal basis of single-qubit states to encode the secret message.
We discuss the security of the proposed protocol against some common attacks and show that no eaves-dropper can get any information from the quantum and classical channels.
arXiv Detail & Related papers (2021-01-10T16:32:42Z) - Asymptotic security analysis of teleportation based quantum cryptography [0.0]
We prove that the teleportation based quantum cryptography protocol presented in [Opt. Commun 283, 184] is secure against all types of individual and collective attacks.
We then investigate modifications to that protocol leading to greater secret-key rates and to security against coherent attacks.
arXiv Detail & Related papers (2020-02-10T17:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.