論文の概要: Mining the Weights Knowledge for Optimizing Neural Network Structures
- arxiv url: http://arxiv.org/abs/2110.05954v1
- Date: Mon, 11 Oct 2021 05:20:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-13 15:36:46.966243
- Title: Mining the Weights Knowledge for Optimizing Neural Network Structures
- Title(参考訳): ニューラルネットワーク構造最適化のための重み付け知識のマイニング
- Authors: Mengqiao Han, Xiabi Liu, Zhaoyang Hai, Xin Duan
- Abstract要約: タスク固有のニューラルネットワーク(略してTNN)の重みを入力として使用するスイッチャーニューラルネットワーク(SNN)を導入する。
重みに含まれる知識をマイニングすることで、SNNはTNNのニューロンをオフにするスケーリング因子を出力する。
精度の面では,ベースラインネットワークやその他の構造学習手法を安定的に,かつ著しく上回っている。
- 参考スコア(独自算出の注目度): 1.995792341399967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge embedded in the weights of the artificial neural network can be
used to improve the network structure, such as in network compression. However,
the knowledge is set up by hand, which may not be very accurate, and relevant
information may be overlooked. Inspired by how learning works in the mammalian
brain, we mine the knowledge contained in the weights of the neural network
toward automatic architecture learning in this paper. We introduce a switcher
neural network (SNN) that uses as inputs the weights of a task-specific neural
network (called TNN for short). By mining the knowledge contained in the
weights, the SNN outputs scaling factors for turning off and weighting neurons
in the TNN. To optimize the structure and the parameters of TNN simultaneously,
the SNN and TNN are learned alternately under the same performance evaluation
of TNN using stochastic gradient descent. We test our method on widely used
datasets and popular networks in classification applications. In terms of
accuracy, we outperform baseline networks and other structure learning methods
stably and significantly. At the same time, we compress the baseline networks
without introducing any sparse induction mechanism, and our method, in
particular, leads to a lower compression rate when dealing with simpler
baselines or more difficult tasks. These results demonstrate that our method
can produce a more reasonable structure.
- Abstract(参考訳): ニューラルネットワークの重みに埋め込まれた知識は、ネットワーク圧縮のようなネットワーク構造を改善するのに使うことができる。
しかし、知識は手作業で設定され、あまり正確ではないかもしれないし、関連する情報は見過ごされるかもしれない。
哺乳類の脳における学習の仕組みに触発されて、我々はニューラルネットワークの重みに含まれる知識を自動アーキテクチャ学習に向けて掘り下げる。
タスク固有のニューラルネットワーク(略してTNN)の重みを入力として使用するスイッチャーニューラルネットワーク(SNN)を導入する。
重みに含まれる知識をマイニングすることで、SNNはTNNのニューロンをオフにして重み付けするためのスケーリング因子を出力する。
TNNの構造とパラメータを同時に最適化するために,SNNとTNNは,確率勾配勾配を用いたTNNと同等の性能評価の下で交互に学習する。
本手法は,分類アプリケーションにおいて広く利用されているデータセットや一般的なネットワーク上でテストする。
精度の面では,ベースラインネットワークやその他の構造学習手法を安定かつ著しく上回る。
同時に、ベースラインネットワークをスパース誘導機構を導入することなく圧縮し、特に本手法は、より単純なベースラインやより難しいタスクを扱う際の圧縮率を低下させる。
これらの結果は,本手法がより合理的な構造を創出できることを示す。
関連論文リスト
- Investigating Sparsity in Recurrent Neural Networks [0.0]
本論文は, プルーニングとスパースリカレントニューラルネットワークがRNNの性能に与える影響を考察することに焦点を当てる。
まず,RNNの刈り込み,RNNの性能への影響,および刈り込み後の精度回復に必要な訓練エポック数について述べる。
次に、スパースリカレントニューラルネットワークの作成と訓練を継続し、その基礎となる任意の構造の性能とグラフ特性の関係を同定する。
論文 参考訳(メタデータ) (2024-07-30T07:24:58Z) - BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation [20.34272550256856]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークを模倣し、離散スパイクを介して情報を伝達する。
本研究は,静的およびニューロモルフィックなデータセット上でSNNをトレーニングするための最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-12T08:17:24Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
スパイキングニューラルネットワーク(SNN)は、低レイテンシで低消費電力のニューロモルフィックハードウェアで使用するために、ディープラーニングコミュニティの注目を集めている。
本稿では,Spking Phasor Neural Networks(SPNN)を紹介する。
SPNNは複雑に評価されたディープニューラルネットワーク(DNN)に基づいており、スパイク時間による位相を表す。
論文 参考訳(メタデータ) (2022-04-01T15:06:15Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks [2.649890751459017]
本稿では,ニューラルネットワーク(NN)における疎結合層の自動獲得のための新しい学習手法を提案する。
タスクニューラルネットワーク(TNN)の構造を最適化するためにスイッチングニューラルネットワーク(SNN)を設計する。
論文 参考訳(メタデータ) (2021-03-26T11:29:40Z) - A Temporal Neural Network Architecture for Online Learning [0.6091702876917281]
時間的ニューラルネットワーク(TNN)は、相対スパイク時間として符号化された情報を通信し、処理する。
TNNアーキテクチャを提案し、概念実証として、オンライン教師付き分類のより大きな文脈でTNNの動作を示す。
論文 参考訳(メタデータ) (2020-11-27T17:15:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。