論文の概要: Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks
- arxiv url: http://arxiv.org/abs/2103.15590v1
- Date: Fri, 26 Mar 2021 11:29:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 14:47:10.356449
- Title: Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks
- Title(参考訳): ネットワーク重みに含まれる知識を探索してスパースニューラルネットワークを得る
- Authors: Mengqiao Han, Xiabi Liu
- Abstract要約: 本稿では,ニューラルネットワーク(NN)における疎結合層の自動獲得のための新しい学習手法を提案する。
タスクニューラルネットワーク(TNN)の構造を最適化するためにスイッチングニューラルネットワーク(SNN)を設計する。
- 参考スコア(独自算出の注目度): 2.649890751459017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse neural networks are important for achieving better generalization and
enhancing computation efficiency. This paper proposes a novel learning approach
to obtain sparse fully connected layers in neural networks (NNs) automatically.
We design a switcher neural network (SNN) to optimize the structure of the task
neural network (TNN). The SNN takes the weights of the TNN as the inputs and
its outputs are used to switch the connections of TNN. In this way, the
knowledge contained in the weights of TNN is explored to determine the
importance of each connection and the structure of TNN consequently. The SNN
and TNN are learned alternately with stochastic gradient descent (SGD)
optimization, targeting at a common objective. After learning, we achieve the
optimal structure and the optimal parameters of the TNN simultaneously. In
order to evaluate the proposed approach, we conduct image classification
experiments on various network structures and datasets. The network structures
include LeNet, ResNet18, ResNet34, VggNet16 and MobileNet. The datasets include
MNIST, CIFAR10 and CIFAR100. The experimental results show that our approach
can stably lead to sparse and well-performing fully connected layers in NNs.
- Abstract(参考訳): スパースニューラルネットワークは、より良い一般化と計算効率の向上のために重要である。
本稿では,ニューラルネットワーク(NN)における疎結合層の自動獲得のための新しい学習手法を提案する。
タスクニューラルネットワーク(TNN)の構造を最適化するために,スイッチタニューラルネットワーク(SNN)を設計する。
SNNは入力としてTNNの重みを取り、その出力はTNNの接続を切り替えるために使用される。
このようにして、TNNの重みに含まれる知識を探索し、それぞれの接続の重要性とTNNの構造を決定する。
SNNとTNNは確率勾配降下(SGD)最適化と交互に学習され、共通の目的を目標とする。
学習後,TNNの最適構造と最適パラメータを同時に達成する。
提案手法を評価するため,様々なネットワーク構造やデータセット上で画像分類実験を行う。
ネットワーク構造としては、LeNet、ResNet18、ResNet34、VggNet16、MobileNetがある。
データセットにはMNIST、CIFAR10、CIFAR100が含まれる。
実験結果から,nnsの完全接続層は安定的に分散化され,高い性能を発揮できることがわかった。
関連論文リスト
- LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on
Riemannian Gradient Descent With Illustrations of Speech Processing [74.31472195046099]
我々は、低ランクテンソルトレイン深層ニューラルネットワーク(TT-DNN)を用いて、エンドツーエンドのディープラーニングパイプライン、すなわちLR-TT-DNNを構築する。
LR-TT-DNNと畳み込みニューラルネットワーク(CNN)を組み合わせたハイブリッドモデルを構築し、性能を向上する。
我々の実証的な証拠は、モデルパラメータが少ないLR-TT-DNNとCNN+(LR-TT-DNN)モデルが、TT-DNNとCNN+(LR-TT-DNN)モデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-03-11T15:55:34Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本稿では,ニューロンをスパイクしたセマンティックセグメンテーションネットワークの分類を超えて,SNNの応用について検討する。
論文 参考訳(メタデータ) (2021-10-14T21:53:03Z) - Mining the Weights Knowledge for Optimizing Neural Network Structures [1.995792341399967]
タスク固有のニューラルネットワーク(略してTNN)の重みを入力として使用するスイッチャーニューラルネットワーク(SNN)を導入する。
重みに含まれる知識をマイニングすることで、SNNはTNNのニューロンをオフにするスケーリング因子を出力する。
精度の面では,ベースラインネットワークやその他の構造学習手法を安定的に,かつ著しく上回っている。
論文 参考訳(メタデータ) (2021-10-11T05:20:56Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
スパイキングニューラルネットワーク(SNN)は、その生物学的妥当性とニューロモルフィックチップの高エネルギー効率により、非常に重要視されている。
ほとんどの既存の方法は、ANNsとSNNsの違いを無視するSNNsに人工ニューラルネットワーク(ANNs)のプルーニングアプローチを直接適用する。
本稿では,ネットワーク構造を無訓練でシームレスに最適化可能な,snsの接続性と重み付けの合同学習アルゴリズムgradle rewiring (gradr)を提案する。
論文 参考訳(メタデータ) (2021-05-11T10:05:53Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNNは、視覚オブジェクト追跡ベンチマークであるTB2013, VOT2016, GOT-10kにおいて、短いレイテンシと低い精度の損失を達成する最初のディープSNNトラッカーである。
SiamSNNは、ニューロモルフィックチップTrueNorth上で低エネルギー消費とリアルタイムを実現する。
論文 参考訳(メタデータ) (2020-03-17T08:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。