論文の概要: Real-time Drift Detection on Time-series Data
- arxiv url: http://arxiv.org/abs/2110.06383v1
- Date: Tue, 12 Oct 2021 22:09:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 05:08:50.134761
- Title: Real-time Drift Detection on Time-series Data
- Title(参考訳): 時系列データによるリアルタイムドリフト検出
- Authors: Nandini Ramanan, Rasool Tahmasbi, Marjorie Sayer, Deokwoo Jung,
Shalini Hemachandran, Claudionor Nunes Coelho Jr
- Abstract要約: 季節変動を考慮した非教師付き時間ドリフト検出器(unsupervised Temporal Drift Detector, UTDD)を提案する。
提案手法は, 時系列データ中の時間的概念のドリフトを, 基底真理の欠如により効率的に検出する。
- 参考スコア(独自算出の注目度): 0.6303112417588329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practical machine learning applications involving time series data, such as
firewall log analysis to proactively detect anomalous behavior, are concerned
with real time analysis of streaming data. Consequently, we need to update the
ML models as the statistical characteristics of such data may shift frequently
with time. One alternative explored in the literature is to retrain models with
updated data whenever the models accuracy is observed to degrade. However,
these methods rely on near real time availability of ground truth, which is
rarely fulfilled. Further, in applications with seasonal data, temporal concept
drift is confounded by seasonal variation. In this work, we propose an approach
called Unsupervised Temporal Drift Detector or UTDD to flexibly account for
seasonal variation, efficiently detect temporal concept drift in time series
data in the absence of ground truth, and subsequently adapt our ML models to
concept drift for better generalization.
- Abstract(参考訳): ファイヤーウォールログ分析のような、異常な振る舞いを積極的に検出する時系列データを含む実用的な機械学習アプリケーションは、ストリーミングデータのリアルタイム分析に関係している。
したがって、このようなデータの統計的特性が時間とともに頻繁に変化する可能性があるため、MLモデルを更新する必要がある。
文献で検討された1つの代替案は、モデルの精度が低下するたびに更新されたデータでモデルを再訓練することである。
しかし、これらの手法は、ほぼリアルタイムに真実の真理が得られ、実現されることはほとんどない。
さらに、季節データを用いたアプリケーションでは、季節変動によって時間概念ドリフトが組み合わされる。
本研究では,非教師付き時間ドリフト検出器 (unsupervised Temporal Drift Detector, UTDD) と呼ばれる手法を提案する。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
本稿では,時空間交通流予測問題に対するオンラインテスト時間適応手法の最初の研究を行う。
本稿では,直列分解法(ADCSD)による適応二重補正法を提案する。
提案手法では,テストフェーズ中にトレーニングされたモデル全体を微調整する代わりに,トレーニングされたモデルの後,ライトネットワークをアタッチし,データ入力が観測されるたびに,ライトネットワークのみをテストプロセスで微調整する。
論文 参考訳(メタデータ) (2024-01-08T12:04:39Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Towards Flexible Time-to-event Modeling: Optimizing Neural Networks via
Rank Regression [17.684526928033065]
我々はDART(Time-to-event Prediction)のためのDeep AFT Rank-regressionモデルを導入する。
このモデルは、表現学習において効率的で信頼性の高いゲハンのランク統計に基づく客観的関数を用いる。
提案手法は, 生存時間分布に分布仮定を課さない半パラメトリックなAFTモデリング手法である。
論文 参考訳(メタデータ) (2023-07-16T13:58:28Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - DeepVARwT: Deep Learning for a VAR Model with Trend [1.9862987223379664]
本稿では,トレンドと依存構造を最大限に推定するために,ディープラーニング手法を用いた新しい手法を提案する。
この目的のためにLong Short-Term Memory (LSTM) ネットワークが使用される。
シミュレーション研究と実データへの適用について述べる。
論文 参考訳(メタデータ) (2022-09-21T18:23:03Z) - SALAD: Self-Adaptive Lightweight Anomaly Detection for Real-time
Recurrent Time Series [1.0437764544103274]
本稿では,Long Short-Term Memory(LSTM)と呼ばれる特殊タイプのリカレントニューラルネットワークに基づく自己適応型軽量異常検出手法であるSALADを紹介する。
2つの実世界のオープンソース時系列データセットに基づく実験により、SALADは他の5つの最先端の異常検出アプローチよりも精度が高いことが示された。
さらに、結果はSALADが軽量であり、コモディティマシンにデプロイできることも示しています。
論文 参考訳(メタデータ) (2021-04-19T10:36:23Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Adjusting for Autocorrelated Errors in Neural Networks for Time Series
Regression and Forecasting [10.659189276058948]
我々は,自己相関係数をモデルパラメータと組み合わせて学習し,自己相関誤差の補正を行う。
時系列回帰では,大規模な実験により,本手法がPrais-Winsten法より優れていることが示された。
実世界の幅広いデータセットを対象とした結果から,ほぼすべてのケースにおいて,本手法が性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T04:25:51Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。